Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keita Arakawa is active.

Publication


Featured researches published by Keita Arakawa.


Journal of Plant Research | 2009

DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis

Tomokazu Tsutsui; Wataru Kato; Yutaka Asada; Kaori Sako; Takeo Sato; Yutaka Sonoda; Satoshi Kidokoro; Kazuko Yamaguchi-Shinozaki; Masanori Tamaoki; Keita Arakawa; Takanari Ichikawa; Miki Nakazawa; Motoaki Seki; Kazuo Shinozaki; Minami Matsui; Akira Ikeda; Junji Yamaguchi

Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.


Journal of Plant Physiology | 2003

Abscisic acid-induced freezing tolerance in the mossPhyscomitrella patens is accompanied by increased expression of stress-related genes

Anzu Minami; Manabu Nagao; Keita Arakawa; Seizo Fujikawa; Daisuke Takezawa

Abscisic acid (ABA)-induced genes are implicated in the development of freezing tolerance during cold acclimation in higher plants, but their roles in lower land plants have not been determined. We examined ABA- and cold-induced changes in freezing tolerance and gene expression in the moss Physcomitrella patens. Slow equilibrium freezing to -4 degrees C of P. patens protonemata grown under normal growth conditions killed more than 90% of the cells, indicating that the protonema cells are freezing-sensitive. ABA treatment for 24 h dramatically increased the freezing tolerance of the protonemata, while cold treatment only slightly increased the freezing tolerance within the same period. We examined the expressions of fourteen Physcomitrella patens ABA-responsive genes (PPARs), isolated from ABA-treated protonemata. ABA treatment resulted in a remarkable increase in the expression of all the PPAR genes within 24 h. Several of the PPAR genes (PPAR 1 to 8, and 14) were also responsive to cold, but the response was much slower than that to ABA. Treatment with hyperosmotic concentrations of NaCl and mannitol increased freezing tolerance of protonemata and also increased the expression levels of eleven PPAR genes (PPAR2, 3, 5 to 8, and 10 to 14). These results suggest that ABA and environmental stresses positively affect the expression of common genes that participate in protection of protonema cells leading to the development of freezing tolerance.


Plant Cell and Environment | 2008

Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti‐ice nucleation activity

Jun Kasuga; Yasuyuki Hashidoko; Atsushi Nishioka; Megumi Yoshiba; Keita Arakawa; Seizo Fujikawa

Xylem parenchyma cells (XPCs) of boreal hardwood species adapt to sub-freezing temperatures by deep supercooling to maintain a liquid state of intracellular water near -40 degrees C. Our previous study found that crude xylem extracts from such tree species exhibited anti-ice nucleation activity to promote supercooling of water. In the present study, thus, we attempted to identify the causative substances of supercooling. Crude xylem extracts from katsura tree (Cercidiphyllum japonicum), of which XPCs exhibited deep supercooling to -40 degrees C, were prepared by methanol extraction. The crude extracts were purified by liquid-liquid extraction and then by silica gel column chromatography. Although all the fractions obtained after each purification step exhibited some levels of anti-ice nucleation activity, only the most active fraction was retained to proceed to the subsequent level of purification. High-performance liquid chromatography (HPLC) analysis of a fraction with the highest level of activity revealed four peaks with high levels of anti-ice nucleation activity in the range of 2.8-9.0 degrees C. Ultraviolet (UV), mass and nuclear magnetic resonance (NMR) spectra revealed that these four peaks corresponded to quercetin-3-O-beta-glucoside (Q3G), kaempferol-7-O-beta-glucoside (K7G), 8-methoxykaempferol-3-O-beta-glucoside (8MK3G) and kaempferol-3-O-beta-glucoside (K3G). Microscopic observations confirmed the presence of flavonoids in cytoplasms of XPCs. These results suggest that diverse kinds of anti-ice nucleation substances, including flavonol glycosides, may have important roles in deep supercooling of XPCs.


Plant Physiology | 2003

Xylem Ray Parenchyma Cells in Boreal Hardwood Species Respond to Subfreezing Temperatures by Deep Supercooling That Is Accompanied by Incomplete Desiccation

Katsushi Kuroda; Jun Kasuga; Keita Arakawa; Seizo Fujikawa

It has been accepted that xylem ray parenchyma cells (XRPCs) in hardwood species respond to subfreezing temperatures either by deep supercooling or by extracellular freezing. Present study by cryo-scanning electron microscopy examined the freezing responses of XRPCs in five boreal hardwoods: Salix sachalinensis Fr. Schmit, Populus sieboldii Miq., Betula platyphylla Sukat. var japonica Hara,Betula pubescens Ehrh., and red osier dogwood (Cornus sericea), in which XRPCs have been reported to respond by extracellular freezing. Cryo-scanning electron microscopy observations revealed that slow cooling of xylem to −80°C resulted in intracellular freezing in the majority of XRPCs in S. sachalinensis, an indication that these XRPCs had been deep supercooled. In contrast, in the majority of XRPCs in P. sieboldii, B. platyphylla, B. pubescens, and red osier dogwood, slow cooling to −80°C produced slight cytorrhysis without clear evidence of intracellular freezing, suggesting that these XRPCs might respond by extracellular freezing. In these XRPCs exhibited putative extracellular freezing; however, deep etching revealed the apparent formation of intracellular ice crystals in restricted local areas. To confirm the occurrence of intracellular freezing, we rewarmed these XRPCs after cooling and observed very large intracellular ice crystals as a result of the recrystallization. Thus, the XRPCs in all the boreal hardwoods that we examined responded by deep supercooling that was accompanied with incomplete desiccation. From these results, it seems possible that limitations to the deep-supercooling ability of XRPCs might be a limiting factor for adaptation of hardwoods to cold climates.


Journal of Plant Research | 1999

Alterations of Intracellular pH in Response to Low Temperature Stresses

Shizuo Yoshida; Kenmi Hotsubo; Yukio Kawamura; Mari Murai; Keita Arakawa; Daisuke Takezawa

+-ATPase is one of the primary cellular events directly resulting from cold exposure. We demonstrate here that cold-induced inactivation of the proton translocating enzyme is closely linked to the rapid acidification of the cytoplasm and the concomitant alkalization of the vacuoles, suggesting an important role of the enzyme in maintaining homeostasis of the cellular pH in a cold environment. The stability of the vacuolar H+-ATPase to cold both in vivo and in vitro is distinctly different between species sensitive and insensitive to cold. These findings provide further insight into the way in which the vacuolar H+-ATPase is involved in cold adaptation of plants. In addition, the temperature reduction and the concentration of the cytoplasm as a consequence of freeze-induced dehydration may also result in changes in the cellular pH. In fact, we demonstrate here that the cytoplasm is markedly acidified upon freezing; in particular, in cells of less hardy plants. Freeze-induced acidification is presumably due to changes in the physico-chemical properties of the cytoplasm and the changes in the permeability of the vacuolar membrane both of which result from severe dehydration. The physiological significance of freeze-induced acidification of the cytoplasm is discussed.


Iawa Journal | 2008

Conducting Pathways in North Temperate Deciduous Broadleaved Trees

Toshihiro Umebayashi; Yasuhiro Utsumi; Shinya Koga; Susumu Inoue; Seizo Fujikawa; Keita Arakawa; Junji Matsumura; Kazuyuki Oda

The interspecific variation of dye ascent in the stems of 44 broadleaved deciduous species growing in Japan was studied using freeze-dried samples after dye injection. The dye ascending pattern differed both within and between ring-porous and diffuse-porous species. In large earlywood vessels of all ring-porous species, the dye ascended only in the outermost annual ring, and the inner annual rings had lost their water transport function. The dye ascending pattern within the inner annual rings in the ring-porous species was categorized into three types: i) the dye ascended both in the many latewood vessels throughout the latewood and small earlywood vessels; ii) the dye ascended in the many vessels throughout the latewood; and iii) the dye ascended mainly in the late latewood vessels. In diffuse-porous species, the dye ascending pattern within the annual rings also was categorized into three types: i) the dye ascended throughout the annual rings; ii) the dye ascended mainly in the earlywood vessels; and iii) the dye ascended mainly in the latewood vessels. Xylem water distribution was also examined by cryo-SEM in three ring-porous and three diffuse-porous species that had different dye ascending patterns. The water distribution pattern within annual rings was correlated with the dye ascending pattern except for one diffuseporous species (Salix gracilistyla). In this case, water was distributed in the whole region of the annual rings although dye was mainly distributed in the earlywood. These results showed that the functional area of water transport within annual rings differed among ring-porous species and diffuse-porous species.


Journal of Plant Physiology | 2012

Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling.

Salma Begum Bhyan; Anzu Minami; Yasuko Kaneko; Shingo Suzuki; Keita Arakawa; Yoichi Sakata; Daisuke Takezawa

Overwintering plants develop tolerance to freezing stress through a cold acclimation process by which the cells provoke internal protective mechanisms against freezing. The stress hormone abscisic acid (ABA) is known to increase freezing tolerance of plant cells, but its role in cold acclimation has not been determined. In this study, we used ABA-insensitive lines of the moss Physcomitrella patens to determine whether cold acclimation in bryophytes involves an ABA-dependent process. Two ABA-insensitive lines, both impaired in ABA signaling without showing ABA-induced stress tolerance, were subjected to cold acclimation, and changes in freezing tolerance and accumulation of soluble sugars and proteins were compared to the wild type. The wild-type cells acquired freezing tolerance in response to cold acclimation treatment, but very little increase in freezing tolerance was observed in the ABA-insensitive lines. Analysis of low-molecular-weight soluble sugars indicated that the ABA-insensitive lines accumulated sucrose, a major compatible solute in bryophytes, to levels comparable with those of the wild type during cold acclimation. However, accumulation of the trisaccharide theanderose and of specific LEA-like boiling-soluble proteins was very limited in the ABA-insensitive lines. Furthermore, analysis of cold-induced expression of genes encoding LEA-like proteins revealed that the ABA-insensitive lines accumulate only small amounts of these transcripts during cold acclimation. Our results indicate that cold acclimation of bryophytes requires an ABA-dependent signaling process. The results also suggest that cold-induced sugar accumulation, depending on the sugar species, can either be dependent or independent of the ABA-signaling pathway.


Trees-structure and Function | 2010

Xylem water-conducting patterns of 34 broadleaved evergreen trees in southern Japan

Toshihiro Umebayashi; Yasuhiro Utsumi; Shinya Koga; Susumu Inoue; Junji Matsumura; Kazuyuki Oda; Seizo Fujikawa; Keita Arakawa; Kyoichi Otsuki

A dye injection method was used to elucidate the xylem water-conducting pathways of 34 broadleaved evergreen trees growing in southern Japan: two semi-ring-porous, 26 diffuse-porous, five radial-porous and one non-vessel species. The large earlywood vessels in semi-ring-porous species have a water transport function in only the outermost annual ring, as in deciduous ring-porous species. On the other hand, the small vessels in semi-ring-porous species maintain the water transport function in many outer annual rings. For the other xylem-type species, the many vessels in many outer annual rings have a water transport function. In diffuse-porous species, we categorized the water-conducting pattern within the annual rings into two types: d1 type, where water travels through vessels in the whole region; and d2 type, where water travels mainly through the earlywood vessels. The pattern in radial-porous species is similar to that in the d1 type; the pattern in non-vessels species is similar to that in the d2 type. The vessel diameter in radial-porous species is similar to that of the earlywood vessels of semi-ring-porous species. These results suggest that the conduit diameter size is only one of many factors determining the water-conducting pathways of broadleaved evergreen species.


Cryobiology | 2008

Improved cryopreservation by diluted vitrification solution with supercooling-facilitating flavonol glycoside.

Daisuke Kami; Jun Kasuga; Keita Arakawa; Seizo Fujikawa

The effect of kaempferol-7-O-glucoside (KF7G), one of the supercooling-facilitating flavonol glycosides which was originally found in deep supercooling xylem parenchyma cells of the katsura tree and was found to exhibit the highest level of supercooling-facilitating activity among reported substances, was examined for successful cryopreservation by vitrification procedures, with the aim of determining the possibility of using diluted vitrification solution (VS) to reduce cryoprotectant toxicity and also to inhibit nucleation at practical cooling and rewarming by the effect of supplemental KF7G. Examination was performed using shoot apices of cranberry and plant vitrification solution 2 (PVS2) with dilution. Vitrification procedures using the original concentration (100%) of PVS2 caused serious injury during treatment with PVS2 and resulted in no regrowth after cooling and rewarming (cryopreservation). Dilution of the concentration of PVS2 to 75% or 50% (with the same proportions of constituents) significantly reduced injury by PVS2 treatment, but regrowth was poor after cryopreservation. It is thought that dilution of PVS2 reduced injury by cryoprotectant toxicity, but such dilution caused nucleation during cooling and/or rewarming, resulting in poor survival. On the other hand, addition of 0.5mg/ml (0.05% w/v) KF7G to the diluted PVS2 resulted in significantly (p<0.05) higher regrowth rates after cryopreservation. It is thought that addition of supercooling-facilitating KF7G induced vitrification even in diluted PVS2 probably due to inhibition of ice nucleation during cooling and rewarming and consequently resulted in higher regrowth. The results of the present study indicate the possibility that concentrations of routinely used VSs can be reduced by adding supercooling-facilitating KF7G, by which more successful cryopreservation might be achieved for a wide variety of biological materials.


Planta | 2007

Long- and short-term freezing induce different types of injury in Arabidopsis thaliana leaf cells

Manabu Nagao; Keita Arakawa; Daisuke Takezawa; Seizo Fujikawa

In nature, intact plant cells are subjected to freezing and can remain frozen for prolonged periods. We assayed the survival of Arabidopsis thaliana leaf cells following freezing and found that short- and long-term exposures produced different types of cellular injury. To identify the cause of these injuries, we examined the ultrastructure of the cell plasma membranes. Our results demonstrate that ultrastructural changes in the plasma membrane due to short-term freezing are associated with interbilayer events, including close apposition of the membranes. In both acclimated and non-acclimated leaf cells, these interbilayer events resulted in “fracture-jump lesions” in the plasma membrane. On the other hand, long-term freezing was associated with the development of extensive protein-free areas caused by the aggregation of intramembrane proteins with consequent vesiculation of the affected membrane regions; this effect was clearly different from the ultrastructural changes induced by interbilayer events. We also found that prolonged exposure of non-acclimated leaf cells to a concentrated electrolyte solution produced effects that were similar to those caused by long-term freezing, suggesting that the ultrastructural changes observed in the plasma membrane following long-term freezing are produced by exposure of the leaf cells to a concentrated electrolyte solution. This study illustrates multiple causes of freezing-induced injury in plant cells and may provide useful information regarding the functional role of the diverse changes that occur during cold acclimation.

Collaboration


Dive into the Keita Arakawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge