Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith B. Elkon is active.

Publication


Featured researches published by Keith B. Elkon.


Journal of Clinical Investigation | 2007

Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.

Tomas Vaisar; Subramaniam Pennathur; Pattie S. Green; Sina A. Gharib; Andrew N. Hoofnagle; Marian C. Cheung; Jaeman Byun; Simona Vuletic; Sean Y. Kassim; Pragya Singh; Helen Chea; Robert H. Knopp; John D. Brunzell; Randolph L. Geary; Alan Chait; Xue Qiao Zhao; Keith B. Elkon; Santica M. Marcovina; Paul M. Ridker; John F. Oram; Jay W. Heinecke

HDL lowers the risk for atherosclerotic cardiovascular disease by promoting cholesterol efflux from macrophage foam cells. However, other antiatherosclerotic properties of HDL are poorly understood. To test the hypothesis that the lipoprotein carries proteins that might have novel cardioprotective activities, we used shotgun proteomics to investigate the composition of HDL isolated from healthy subjects and subjects with coronary artery disease (CAD). Unexpectedly, our analytical strategy identified multiple complement-regulatory proteins and a diverse array of distinct serpins with serine-type endopeptidase inhibitor activity. Many acute-phase response proteins were also detected, supporting the proposal that HDL is of central importance in inflammation. Mass spectrometry and biochemical analyses demonstrated that HDL3 from subjects with CAD was selectively enriched in apoE, raising the possibility that HDL carries a unique cargo of proteins in humans with clinically significant cardiovascular disease. Collectively, our observations suggest that HDL plays previously unsuspected roles in regulating the complement system and protecting tissue from proteolysis and that the protein cargo of HDL contributes to its antiinflammatory and antiatherogenic properties.


The New England Journal of Medicine | 1987

Association between Lupus Psychosis and Antiribosomal P Protein Antibodies

Eloisa Bonfa; Steven J. Golombek; Lee D. Kaufman; Susan Skelly; Herbert Weissbach; Nathan Brot; Keith B. Elkon

In 18 of 20 patients with psychosis secondary to systemic lupus erythematosus (SLE), autoantibodies to ribosomal P proteins were detected by immunoblotting and measured with a new radioimmunoassay using a synthetic peptide as antigen. The frequency of anti-P was not increased in patients with other central nervous system manifestations of SLE (3 of 20, by radioimmunoassay), in patients with transient behavioral abnormalities due to SLE (none of 8), in patients with psychosis who did not have SLE (none of 13), or in normal controls (none of 20). In four of five paired serum samples, anti-P-peptide antibody levels increased 5-fold to 30-fold during the active phase of lupus psychosis. Longitudinal studies of anti-P activity in two patients with psychosis revealed that anti-P levels increased before and during the active phases of psychosis but not during sepsis or other exacerbations of SLE, and that the elevations were selective for anti-P antibodies, as opposed to anti-DNA antibodies. Longitudinal studies of anti-P activity in two patients with anti-P but without psychosis showed less than threefold changes in anti-P levels despite exacerbations of disease. We conclude that anti-P is associated with lupus psychosis and that synthetic peptide antigens may be useful for the detection and measurement of autoantibodies to intracellular proteins.


Journal of Experimental Medicine | 2002

I-PLA2 Activation during Apoptosis Promotes the Exposure of Membrane Lysophosphatidylcholine Leading to Binding by Natural Immunoglobulin M Antibodies and Complement Activation

Sun Jun Kim; Debra Gershov; Xiaojing Ma; Nathan Brot; Keith B. Elkon

Deficiency of serum immunoglobulin (Ig)M is associated with the development of a lupus-like disease in mice. Recent studies suggest that classical complement components facilitate the clearance of apoptotic cells and that failure to do so predisposes mice to lupus. Since IgM is a potent activator of the classical complement pathway, we examined IgM binding to dying cells. IgM, but not IgG, bound to apoptotic T cells through the Fab′ portion of the antibody. Exposure of apoptotic cell membranes to phospholipase (PL) A2 increased, whereas PLD reduced, IgM binding and complement activation. Absorption studies combined with direct plate binding assays, revealed that IgM antibodies failed to bind to phosphatidyl lipids, but did recognize lysophosphatidylcholine and the phosphorylcholine head group. Both iPLA2 and cPLA2 are activated during apoptosis. Since inhibition of iPLA2, but not cPLA2, attenuated IgM binding to apoptotic cells, these results strongly suggest that the endogenous calcium independent PLA2, iPLA2, is involved in the hydrolysis of plasma membrane phospholipids and exposure of the epitope(s) recognized by IgM. We propose that recognition of dying cells by natural IgM antibodies is, in part, responsible for complement activation on dying cells leading to their safe clearance.


Nature Medicine | 2016

Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease

Christian Lood; Luz P. Blanco; Monica Purmalek; Carmelo Carmona-Rivera; Suk See De Ravin; Carolyne K. Smith; Harry L. Malech; Jeffrey A. Ledbetter; Keith B. Elkon; Mariana J. Kaplan

Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.


Journal of Immunology | 2010

TLR9 Regulates TLR7- and MyD88-Dependent Autoantibody Production and Disease in a Murine Model of Lupus

Kevin Nickerson; Sean R. Christensen; Jonathan Shupe; Michael Kashgarian; Daniel Kim; Keith B. Elkon; Mark J Shlomchik

Systemic lupus erythematosus is characterized by the production of autoantibodies against nucleic acid-associated Ags. We previously found that Tlr7 was required for anti-Sm and Tlr9 for anti-chromatin autoantibodies. Yet, although Tlr7 deficiency ameliorated disease, Tlr9 deficiency exacerbated it. Despite the mechanistic and clinical implications of this finding, it has yet to be elucidated. In this study, we characterize MRL/lpr lupus-prone mice genetically deficient in Tlr7, Tlr9, both Tlr7 and Tlr9, or Myd88 to test whether Tlr7 and Tlr9 function independently or instead regulate each other. We find that disease that is regulated by Tlr9 (and hence is worse in its absence) depends on Tlr7 for its manifestation. In addition, although Tlr7 and Tlr9 act in parallel pathways on different subsets of autoantibodies, Tlr9 also suppresses the production of Tlr7-dependent RNA-associated autoantibodies, suggesting previously unrecognized cross-regulation of autoantibody production as well. By comparing disease in mice deficient for Tlr7 and/or Tlr9 to those lacking Myd88, we also identify aspects of disease that have Tlr- and Myd88-independent components. These results suggest new models for how Tlr9 regulates and Tlr7 enhances disease and provide insight into aspects of autoimmune disease that are, and are not, influenced by TLR signals.


Journal of Clinical Investigation | 1997

Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand

Liviu Georgescu; Radha Krishna Vakkalanka; Keith B. Elkon; Mary K. Crow

Immune function in SLE is paradoxically characterized by active T cell help for autoantibody production, along with impaired T cell proliferative and cytokine responses in vitro. To reconcile these observations, we investigated the possibility that the accelerated spontaneous cell death of SLE lymphocytes in vitro is caused by an activation-induced cell death process initiated in vivo. 27 SLE patients, three patients with systemic vasculitis, seven patients with arthritis, and 14 healthy subjects were studied. Patients with clinically active SLE or systemic vasculitis had accelerated spontaneous death of PBMC with features of apoptosis at day 5 of culture. A prominent role for IL-10 in the induction of apoptosis was observed, as neutralizing anti-IL-10 mAb markedly reduced cell death in the active SLE patients by 50%, from 22.3 +/- 5.2% to 11.2 +/- 2.8%, and the addition of IL-10 decreased viability in the active SLE group, but not in the control group, by 38%. In addition, apoptosis was shown to be actively induced through the Fas pathway. The potential clinical relevance of T cell apoptosis in active SLE is supported by the correlation of increased apoptosis and IL-10 levels in vitro with low lymphocyte counts in vivo. We conclude that the spontaneous cell death observed in vitro in lymphocytes from patients with SLE and other systemic autoimmune disorders results from in vivo T cell activation, is actively induced by IL-10 and Fas ligand, and reflects pathophysiologically important events in vivo. Activation-induced cell death in vivo provides a pathogenic link between the aberrant T helper cell activation and impaired T cell function that are characteristic features of the immune system of patients with SLE.


Nature Genetics | 2011

Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature

Tracy A. Briggs; Gillian I. Rice; Sarah B. Daly; Jill Urquhart; Hannah Gornall; Brigitte Bader-Meunier; Kannan Baskar; Shankar Baskar; Veronique Baudouin; Michael W. Beresford; Graeme C.M. Black; Rebecca J. Dearman; Francis de Zegher; Emily S. Foster; Camille Frances; Alison R. Hayman; Emma Hilton; Chantal Job-Deslandre; M. L. Kulkarni; Martine Le Merrer; Agnès Linglart; Simon C. Lovell; Kathrin Maurer; L. Musset; Vincent Navarro; Capucine Picard; Anne Puel; Frédéric Rieux-Laucat; Chaim M. Roifman; Sabine Scholl-Bürgi

We studied ten individuals from eight families showing features consistent with the immuno-osseous dysplasia spondyloenchondrodysplasia. Of particular note was the diverse spectrum of autoimmune phenotypes observed in these individuals (cases), including systemic lupus erythematosus, Sjögrens syndrome, hemolytic anemia, thrombocytopenia, hypothyroidism, inflammatory myositis, Raynauds disease and vitiligo. Haplotype data indicated the disease gene to be on chromosome 19p13, and linkage analysis yielded a combined multipoint log10 odds (LOD) score of 3.6. Sequencing of ACP5, encoding tartrate-resistant acid phosphatase, identified biallelic mutations in each of the cases studied, and in vivo testing confirmed a loss of expressed protein. All eight cases assayed showed elevated serum interferon alpha activity, and gene expression profiling in whole blood defined a type I interferon signature. Our findings reveal a previously unrecognized link between tartrate-resistant acid phosphatase activity and interferon metabolism and highlight the importance of type I interferon in the genesis of autoimmunity.


Nature Reviews Rheumatology | 2008

Nature and functions of autoantibodies.

Keith B. Elkon; Paolo Casali

Antibodies that react with self-molecules occur in healthy individuals and are referred to as natural antibodies or autoantibodies. Natural autoantibodies are mainly IgM, are encoded by unmutated V(D)J genes and display a moderate affinity for self-antigens. They provide a first line of defense against infections, probably serve housekeeping functions and contribute to the homeostasis of the immune system. By contrast, high-affinity, somatically mutated IgG autoantibodies reflect a pathologic process whereby homeostatic pathways related to cell clearance, antigen-receptor signaling or cell effector functions are disturbed. In some autoimmune disorders, autoantibodies might be present before disease onset, show remarkable specificity and serve as biomarkers providing an opportunity for diagnosis and therapeutic intervention. In organ-specific autoimmune diseases, such as myasthenia gravis or pemphigus, autoantibodies directly bind to and injure target organs. In systemic autoimmune diseases, autoantibodies react with free molecules, such as phospholipids, as well as cell surface and nucleoprotein antigens, forming pathogenic antigen–antibody (immune) complexes. These autoantibodies injure tissues and organs through engagement of FcγR activation of complement as well as internalization and activation of Toll-like receptors. Activation of intracellular Toll-like receptors in plasmacytoid dendritic cells leads to the production of type I interferon, whereas engagement of intracellular Toll-like receptors on antigen-presenting cells stimulates cell activation and the production of other inflammatory cytokines. Thus, immune complexes might perpetuate a positive feedback loop amplifying inflammatory responses.


Autoimmunity | 2005

IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo

Carol Anne Ogden; Robert Kowalewski; YuFeng Peng; Vivianne Montenegro; Keith B. Elkon

A variety of complement components have been detected on apoptotic cells and proposed to facilitate recognition and/or ingestion by phagocytes. The triggers for complement activation remain uncertain. To determine the role of IgM in classical pathway activation and clearance of apoptotic cells in vitro and in vivo, we quantified these parameters in mice deficient in serum IgM (sIgM). Phagocytosis by bone marrow-derived macrophages of apoptotic cells incubated with serum deficient in sIgM was markedly reduced, similar to apoptotic cells incubated with C1q deficient serum in vitro. Similarly, intraperitoneal clearance of apoptotic cells and cellular C3 deposition were significantly reduced in mice deficient in sIgM compared to wild-type mice. Clearance and C3 deposition were reconstituted by addback of IgM. In mice deficient in both sIgM and C1q, addback of both serum factors was required for restoration of clearance. These findings indicate that, on a quantitative basis, sIgM is a potent factor required for intraperitoneal phagocytosis of apoptotic cells, and further demonstrate that IgM and C1q work in concert to activate complement, resulting in C3 deposition on the apoptotic cell surface and ultimately, efficient clearance of the apoptotic cell by macrophages.


Arthritis & Rheumatism | 2008

Induction of interferon‐α by scleroderma sera containing autoantibodies to topoisomerase I: Association of higher interferon‐α activity with lung fibrosis

Daniel Kim; Anders Peck; Deanna M. Santer; Prashant Patole; Stephen M. Schwartz; Jerry A. Molitor; Frank C. Arnett; Keith B. Elkon

OBJECTIVE Peripheral blood cells (PBMCs) from some patients with systemic sclerosis (SSc) express an interferon-alpha (IFNalpha) signature. The aim of this study was to determine whether SSc patient sera could induce IFNalpha and whether IFNalpha induction was associated with specific autoantibodies and/or clinical features of the disease. METHODS SSc sera containing autoantibodies against either topoisomerase I (anti-topo I; n = 12), nucleolar protein (ANoA; n = 12), or centromeric protein (ACA; n = 13) were cultured with a HeLa nuclear extract and normal PBMCs. In some experiments, different cell extracts or inhibitors of plasmacytoid dendritic cell (DC) activation, Fcgamma receptor II (FcgammaRII), endocytosis, or nucleases were used. IFNalpha was measured by enzyme-linked immunosorbent assay. RESULTS Topo I-containing sera induced significantly higher levels of IFNalpha as compared with all other groups. IFNalpha induction was inhibited by anti-blood dendritic cell antigen 2 (90%), anti-CD32 (76%), bafilomycin (99%), and RNase (82%). In contrast, ACAs induced low levels of IFNalpha even when necrotic, apoptotic, or demethylated extracts were used, despite the fact that CENP-B-binding oligonucleotide containing 2 CpG motifs effectively stimulated IFNalpha. IFNalpha production was significantly higher in patients with diffuse SSc (mean +/- SEM 641 +/- 174 pg/ml) than in those with limited SSc (215 +/- 66 pg/ml) as well as in patients with lung fibrosis than in those without. CONCLUSION Autoantibody subsets in SSc sera differentially induce IFNalpha and may explain the IFNalpha signature observed in SSc. IFNalpha is induced by plasmacytoid DCs and required uptake of immune complexes through FcgammaRII, endosomal transport, and the presence of RNA, presumably for interaction with Toll-like receptor 7. The higher IFNalpha induction in sera from patients with diffuse SSc than in those with limited SSc as well as in sera from patients with lung fibrosis suggests that IFNalpha may contribute to tissue injury.

Collaboration


Dive into the Keith B. Elkon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie An

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Wiedeman

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Minie

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Thomas H. Teal

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge