Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith B. Tierney is active.

Publication


Featured researches published by Keith B. Tierney.


Aquatic Toxicology | 2010

Olfactory toxicity in fishes

Keith B. Tierney; David H. Baldwin; Toshiaki J. Hara; Peter S. Ross; Nathaniel L. Scholz; Christopher J. Kennedy

Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates studies on fish olfaction-contaminant interactions, including metrics ranging from the molecular to the behavioral, and highlights directions for future research.


Biochimica et Biophysica Acta | 2011

Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish

Keith B. Tierney

Altered neurological function will generally be behaviourally apparent. Many of the behavioural models pioneered in mammalian models are portable to zebrafish. Tests are available to capture alterations in basic motor function, changes associated with exteroceptive and interoceptive sensory cues, and alterations in learning and memory performance. Excepting some endpoints involving learning, behavioural tests can be carried out at 4 days post fertilization. Given larvae can be reared quickly and in large numbers, and that software solutions are readily available from multiple vendors to automatically test behavioural responses in 96 larvae simultaneously, zebrafish are a potent and rapid model for screening neurological impairments. Coupling current and emerging behavioural endpoints with molecular techniques will permit and accelerate the determination of the mechanisms behind neurotoxicity and degeneration, as well as provide numerous means to test remedial drugs and other therapies. The emphasis of this review is to highlight unexplored/underutilized behavioural assays for future studies. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.


Environmental Toxicology and Chemistry | 2006

CHANGES IN JUVENILE COHO SALMON ELECTRO-OLFACTOGRAM DURING AND AFTER SHORT-TERM EXPOSURE TO CURRENT-USE PESTICIDES

Keith B. Tierney; Peter S. Ross; Hugh E. Jarrard; K.R. Delaney; Christopher J. Kennedy

For anadromous salmonids, olfaction is a critical sense, enabling return migration. In recent years, several pesticides have been identified that interfere with salmonid olfaction at concentrations in the microg/L range; thus, they may pose a risk to species longevity. In the present study, we investigated the acute effects of five agricultural pesticides on juvenile coho salmon (Oncorhynchus kisutch) olfaction using the electro-olfactogram (EOG), a measure of odorant-evoked field potentials. Electro-olfactogram responses to the odorant L-serine were measured during and following a 30-min exposure of the left olfactory rosette to chlorothalonil, endosulfan, glyphosate acid, iodocarb (IPBC), trifluralin, and 2,4-dichlorophenoxyacetic acid. With the relatively insoluble pesticides endosulfan and trifluralin, decreases in EOG amplitude were only apparent at relatively high concentrations (100 and 300 microg/L, respectively) following 20 min of exposure and were absent for chlorothalonil (1 mg/L). With the water-soluble herbicide glyphosate, significant EOG reductions occurred within 10 min of exposure to 1 mg/L and more rapidly with higher concentrations. Recovery of EOG post-glyphosate exposure was concentration-dependent, and complete recovery was not observed with some concentrations at 60 min postexposure. Dichlorophenoxyacetic acid only affected EOG at high concentration (100 mg/L), where it eliminated EOG within 2 min of exposure. With IPBC, EOG was decreased at 25 min of exposure to 1 microg/L; higher concentrations caused decreases to occur more rapidly. Excluding IPBC and glyphosate, all EOG reductions occurred at concentrations greater than the current Canadian water-quality guidelines and reported 96-h lethality values. Our results show that olfactory neurons can be impaired rapidly by some current-use pesticides, even at exposures in the low-microg/L range.


Experimental Gerontology | 2014

Zebrafish (Danio rerio) as a model for the study of aging and exercise: physical ability and trainability decrease with age.

Matthew J. H. Gilbert; Tanja C. Zerulla; Keith B. Tierney

A rapidly aging global population has motivated the development and use of models for human aging. Studies on aging have shown parallels between zebrafish and humans at the internal organization level; however, few parallels have been studied at the whole-organism level. Furthermore, the effectiveness of exercise as a method to mitigate the effects of aging has not been studied in zebrafish. We investigated the effects of aging and intermittent exercise on swimming performance, kinematics and behavior. Young, middle-aged and old zebrafish (20-29, 36-48 and 60-71% of average lifespan, respectively) were exercised to exhaustion in endurance and sprint swimming tests once a week for four weeks. Both endurance and sprint performance decreased with increased age. Swimming performance improved with exercise training in young and middle-aged zebrafish, but not in old zebrafish. Tail-beat amplitude, which is akin to stride length in humans, increased for all age groups with training. Zebrafish turning frequency, which is an indicator of routine activity, decreased with age but showed no change with exercise. In sum, our results show that zebrafish exhibit a decline in whole-organism performance and trainability with age. These findings closely resemble the senescence-related declines in physical ability experienced by humans and mammalian aging models and therefore support the use of zebrafish as a model for human exercise and aging.


Environmental Toxicology and Chemistry | 2007

The relationship between cholinesterase inhibition and two types of swimming performance in chlorpyrifos‐exposed coho salmon (Oncorhynchus kisutch)

Keith B. Tierney; Matt Casselman; Scott Takeda; Tony Farrell; Christopher J. Kennedy

Brain acetylcholinesterase (AChE) activity was evaluated after two different swimming tests in coho salmon (Oncorhynchus kisutch; 238 +/- 5 g) given 96-h exposures to 0, 5, 10, 20, or 40 microg/L of chlorpyrifos. Brain AChE activity decreased in a concentration-dependent manner (AChE activities were 81.8, 52.2, 37.3, and 21.3% of control for the 5, 10, 20, and 40 microg/L exposures, respectively), whereas swimming performance was impaired after a threshold of AChE impairment was reached. Specifically, for swimming performance (U(crit)) measured using the established ramp-U(crit) test (duration, 152 +/- 8 min), this threshold occurred with AChE activity of 68.5% +/- 18.1% of control. For a rapid acceleration test (U(deltav), where V represents velocity; 27.6 +/- 0.8 min), this value was 52.6% +/- 15.4% of control. Both swim protocols resulted in similar maximum swim speeds (control ramp-U(crit) and U(deltav) values of 3.44 +/- 0.09 and 3.71 +/- 0.13 body lengths/s, respectively), and performance was significantly reduced after 20 and 40 microg/L exposures in both groups (ramp-U(crit) values: 86.4 and 83.6 %, respectively, of control; U(deltav) values: 85.2 and 77.8%, rsepectively, of control). Although both tests yielded similar swim speeds, postexercise plasma lactate concentrations were greater for the U(deltav) test (11.3 +/- 0.6 vs 8.6 +/- 0.5 mmol/L), indicating a greater anaerobic effort. This increase was exaggerated after 10 microg/L of chlorpyrifos (14.6 +/- 1.3 mmol/L), indicating that anaerobic muscle was used to attain the same speed. Given the threshold relationship between AChE inhibition and swimming performance, coho salmon appear able to maintain integrated swimming activity despite significant impairment of an underlying neurological control mechanism.


Environmental Science & Technology | 2014

Advanced Analytical Mass Spectrometric Techniques and Bioassays to Characterize Untreated and Ozonated Oil Sands Process-Affected Water

Nian Sun; Pamela Chelme-Ayala; Nikolaus Klamerth; Kerry N. McPhedran; Md. Shahinoor Islam; Leonidas Pérez-Estrada; Przemysław Drzewicz; Brian J. Blunt; Megan Reichert; Mariel O. Hagen; Keith B. Tierney; Miodrag Belosevic; Mohamed Gamal El-Din

Oil sands process-affected water (OSPW) is a toxic and poorly biodegradable mixture of sand, silt, heavy metals, and organics. In this study, qualitative and quantitative comparisons of naphthenic acids (NAs) were done using ultraperformance liquid chromatography time-of-flight mass spectrometry (UPLC TOF-MS), Fourier transform ion cyclotron resonance (FT-ICR) MS, and ion mobility spectrometry (IMS). The unique combination of these analyses allowed for the determination and correlation of NAs, oxidized NAs, and heteroatom (sulfur or nitrogen) NAs. Despite its lower resolution, UPLC-TOF MS was shown to offer a comparable level of reliability and precision as the high resolution FT-ICR MS. Additionally, the impacts of ozonation (35 mg/L utilized ozone dose) and subsequent NAs degradation on OSPW toxicity were assessed via a collection of organisms and toxicity end points using Vibrio fischeri (nonspecific), specific fish macrophage antimicrobial responses, and fish olfactory responses. Fish macrophages exposed to ozonated OSPW for 1 week showed higher production of reactive oxygen and nitrogen intermediates; however, after 12 weeks the responses were reduced significantly. Fish olfactory tests suggested that OSPW interfered with their perception of odorants. Current results indicate that the quantification of NAs species, using novel analytical methods, can be combined with various toxicity methods to assess the efficiency of OSPW treatment processes.


Neurobiology of Disease | 2013

Targeted mutation of the gene encoding prion protein in zebrafish reveals a conserved role in neuron excitability.

Valerie C. Fleisch; Patricia L.A. Leighton; Hao Wang; Laura M. Pillay; R. Gary Ritzel; Ganive Bhinder; Birbickram Roy; Keith B. Tierney; Declan W. Ali; Andrew J. Waskiewicz; W. Ted Allison

The function of the cellular prion protein (PrP(C)) in healthy brains remains poorly understood, in part because Prnp knockout mice are viable. On the other hand, transient knockdown of Prnp homologs in zebrafish (including two paralogs, prp1 and prp2) has suggested that PrP(C) is required for CNS development, cell adhesion, and neuroprotection. It has been argued that zebrafish Prp2 is most similar to mammalian PrP(C), yet it has remained intransigent to the most thorough confirmations of reagent specificity during knockdown. Thus we investigated the role of prp2 using targeted gene disruption via zinc finger nucleases. Prp2(-/-) zebrafish were viable and did not display overt developmental phenotypes. Back-crossing female prp2(-/-) fish ruled out a role for maternal mRNA contributions. Prp2(-/-) larvae were found to have increased seizure-like behavior following exposure to the convulsant pentylenetetrazol (PTZ), as compared to wild type fish. In situ recordings from intact hindbrains demonstrated that prp2 regulates closing of N-Methyl-d-aspartate (NMDA) receptors, concomitant with neuroprotection during glutamate excitotoxicity. Overall, the knockout of Prp2 function in zebrafish independently confirmed hypothesized roles for PrP, identifying deeply conserved functions in post-developmental regulation of neuron excitability that are consequential to the etiology of prion and Alzheimer diseases.


Environmental Toxicology and Chemistry | 2011

Evidence for behavioral preference toward environmental concentrations of urban‐use herbicides in a model adult fish

Keith B. Tierney; Mark Sekela; Christine E. Cobbler; Besa Xhabija; Melissa Gledhill; Sirinart Ananvoranich; Barbara S. Zielinski

Fish live in waters of contaminant flux. In three urban, fish-bearing waterways of British Columbia, Canada, we found the active ingredients of WeedEx, KillEx, and Roundup herbicide formulations (2,4-D, dicamba, glyphosate, and mecoprop) at low to high ng/L concentrations (0.26 to 309 ng/L) in routine conditions, i.e., no rain for at least one week. Following rain, these concentrations increased by an average of eightfold, suggesting runoff as a major route of herbicide introduction in these waterways. To determine whether fish might be able to limit point-source exposures through sensory-driven behaviors, we introduced pulses of representative herbicide mixtures to individual adult zebrafish (a model species) in flow-through tanks. Fish did the opposite of limit exposure; they chose to spend more time in pulses of herbicide mixtures representative of those that may occur with rain events. This attraction response was not altered by a previous 4-d exposure to lower concentrations of the mixtures, suggesting fish will not learn from previous exposures. However, previous exposures did alter an attraction response to an amino acid prevalent in food (L-alanine). The present study demonstrates that fish living within urban waterways may elect to place themselves in herbicide-contaminated environments and that these exposures may alter their behavioral responses to cues necessary for survival.


Journal of Fish Biology | 2009

The influence of maternal condition on offspring performance in sockeye salmon Oncorhynchus nerka

Keith B. Tierney; David Patterson; Christopher J. Kennedy

Eggs were taken from adult sockeye salmon Oncorhynchus nerka that had reached their journeys end in spawn-ready and moribund condition, and fertilized by healthy males. Egg number, size, hatching success and offspring growth did not differ with maternal condition, which suggests the absence of any persisting physiological maternal effects. Differences were noted in the swimming behaviour and physiology of the offspring at parr stage. In a 30 min schooling test conducted using groups of five in a flume, parr from moribund females were more likely to fatigue, were not as tightly schooled, and had a diminished startle response, both in the per cent responding and the burst distance. In individual, confined swimming tests conducted within a tube, post-exercise plasma lactate concentration, which is an indicator of white muscle use, was greater for parr from moribund adult females. The moribund females also had elevated lactate following exercise (their migration), which suggests heritable differences may exist in muscle use. This study shows that juvenile O. nerka artificially propagated from females exhausted by their return migration can exhibit swimming performance differences, indicating that maternal condition may need to be considered in breeding programmes.


Journal of Visualized Experiments | 2011

Swimming performance assessment in fishes.

Keith B. Tierney

Swimming performance tests of fish have been integral to studies of muscle energetics, swimming mechanics, gas exchange, cardiac physiology, disease, pollution, hypoxia and temperature. This paper describes a flexible protocol to assess fish swimming performance using equipment in which water velocity can be controlled. The protocol involves one to several stepped increases in flow speed that are intended to cause fish to fatigue. Step speeds and their duration can be set to capture swimming abilities of different physiological and ecological relevance. Most frequently step size is set to determine critical swimming velocity (Ucrit), which is intended to capture maximum sustained swimming ability. Traditionally this test has consisted of approximately ten steps each of 20 min duration. However, steps of shorter duration (e.g. 1 min) are increasingly being utilized to capture acceleration ability or burst swimming performance. Regardless of step size, swimming tests can be repeated over time to gauge individual variation and recovery ability. Endpoints related to swimming such as measures of metabolic rate, fin use, ventilation rate, and of behavior, such as the distance between schooling fish, are often included before, during and after swimming tests. Given the diversity of fish species, the number of unexplored research questions, and the importance of many species to global ecology and economic health, studies of fish swimming performance will remain popular and invaluable for the foreseeable future.

Collaboration


Dive into the Keith B. Tierney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter S. Ross

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Anthony P. Farrell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge