Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith C. Ellis is active.

Publication


Featured researches published by Keith C. Ellis.


Antimicrobial Agents and Chemotherapy | 2009

In Vivo and In Vitro Patterns of the Activity of Simocyclinone D8, an Angucyclinone Antibiotic from Streptomyces antibioticus

Lisa M. Oppegard; Bree L. Hamann; Kathryn R. Streck; Keith C. Ellis; Hans Peter Fiedler; Arkady B. Khodursky; Hiroshi Hiasa

ABSTRACT Simocyclinone D8 (SD8) exhibits antibiotic activity against gram-positive bacteria but not against gram-negative bacteria. The molecular basis of the cytotoxicity of SD8 is not fully understood, although SD8 has been shown to inhibit the supercoiling activity of Escherichia coli gyrase. To understand the mechanism of SD8, we have employed biochemical assays to directly measure the sensitivities of E. coli and Staphylococcus aureus type II topoisomerases to SD8 and microarray analysis to monitor the cellular responses to SD8 treatment. SD8 is a potent inhibitor of either E. coli or S. aureus gyrase. In contrast, SD8 exhibits only a moderate inhibitory effect on S. aureus topoisomerase IV, and E. coli topoisomerase IV is virtually insensitive to SD8. The antimicrobial effect of SD8 against E. coli has become evident in the absence of the AcrB multidrug efflux pump. As expected, SD8 treatment exhibits the signature responses to the loss of supercoiling activity in E. coli: upregulation of gyrase genes and downregulation of the topoisomerase I gene. Unlike quinolone treatment, however, SD8 treatment does not induce the SOS response. These results suggest that DNA gyrase is the target of SD8 in both gram-positive and gram-negative bacteria and that the lack of the antibacterial effect against gram-negative bacteria is due, in part, to the activity of the AcrB efflux pump.


Organic Letters | 2015

Selective N-Chelation-Directed C–H Activation Reactions Catalyzed by Pd(II) Nanoparticles Supported on Multiwalled Carbon Nanotubes

Sudha Korwar; Kendra W. Brinkley; Ali R. Siamaki; B. Frank Gupton; Keith C. Ellis

N-Chelation-directed C-H activation reactions that utilize the Pd(II)/Pd(IV) catalytic cycle have been previously reported. To date, these reactions employ only homogeneous palladium catalysts. The first use of a solid-supported Pd(II) catalyst [Pd(II) nanoparticles on multiwalled carbon nanotubes, Pd(II)/MWCNT] to carry out N-chelation-directed C-H to C-O, C-Cl, and C-Br transformations is reported. The results presented demonstrate that the solid-supported Pd(II)/MWCNT catalyst can effectively catalyze C-H activation reactions using the Pd(II)/Pd(IV) catalytic cycle.


Bioorganic & Medicinal Chemistry | 2008

Enantiospecific synthesis and cytotoxicity of 7-(4-methoxyphenyl)-6-phenyl-2,3,8,8a-tetrahydroindolizin-5(1H)-one enantiomers

F. Scott Kimball; Brandon J. Turunen; Keith C. Ellis; Richard H. Himes; Gunda I. Georg

An enantiospecific synthesis was developed to generate both enantiomers of 7-(4-methoxyphenyl)-6-phenyl-2,3,8,8a-tetrahydroindolizin-5(1H)-one. A biological assay utilizing the HCT-116 colon cancer cell line to determine the cytotoxicity of these analogs revealed that only the (R)-enantiomer exhibited appreciable cytotoxicity with an IC(50) value of 0.2 microM.


Bioorganic & Medicinal Chemistry Letters | 2014

Preparation and evaluation of deconstruction analogues of 7-deoxykalafungin as AKT kinase inhibitors:

Sudha Korwar; Thuy Nguyen; Keith C. Ellis

The pyranonaphthoquinone (PNQ) lactone natural products, including 7-deoxykalafungin, have been reported to be potent and selective covalent inhibitors of AKT kinase. In this work we seek to identify structural features of the natural product scaffold that are essential for potency and selectivity. Using a deconstruction approach, we designed and prepared simplified analogues of 7-deoxykalafungin. Testing of the compounds for their ability to inhibit AKT and the closely related kinase PKA revealed that the 3,6-dihydro-2H-pyran ring of the PNQ lactones is required for potent and selective inhibition of AKT. We have also unexpectedly identified a new submicromolar inhibitor of PKA.


Bioorganic & Medicinal Chemistry Letters | 2013

Flavone-based analogues inspired by the natural product simocyclinone D8 as DNA gyrase inhibitors.

Jenson Verghese; Thuy Nguyen; Lisa M. Oppegard; Lauren M. Seivert; Hiroshi Hiasa; Keith C. Ellis

The increasing occurrence of drug-resistant bacterial infections in the clinic has created a need for new antibacterial agents. Natural products have historically been a rich source of both antibiotics and lead compounds for new antibacterial agents. The natural product simocyclinone D8 (SD8) has been reported to inhibit DNA gyrase, a validated antibacterial drug target, by a unique catalytic inhibition mechanism of action. In this work, we have prepared simplified flavone-based analogues inspired by the complex natural product and evaluated their inhibitory activity and mechanism of action. While two of these compounds do inhibit DNA gyrase, they do so by a different mechanism of action than SD8, namely DNA intercalation.


Journal of Natural Products | 2012

Inhibition of human topoisomerases i and II by simocyclinone D8

Lisa M. Oppegard; Thuy Nguyen; Keith C. Ellis; Hiroshi Hiasa

Simocyclinone D8 is an antibiotic isolated from Streptomyces antibioticus Tü 6040 that inhibits the supercoiling activity of DNA gyrase. It also exhibits an inhibitory effect on human topoisomerase II and an antiproliferative activity against some cancer cell lines. Our biochemical studies have revealed that simocyclinone D8 can inhibit the catalytic activity of human topoisomerase I. Thus, simocyclinone D8 is a dual catalytic inhibitor of human topoisomerases I and II.


ACS Chemical Biology | 2015

Structure-guided design of a high affinity inhibitor to human CtBP

Brendan J. Hilbert; Benjamin L. Morris; Keith C. Ellis; Janet L. Paulsen; Celia A. Schiffer; Steven R. Grossman; William E. Royer

Oncogenic transcriptional coregulators C-terminal Binding Protein (CtBP) 1 and 2 possess regulatory d-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains that provide an attractive target for small molecule intervention. Findings that the CtBP substrate 4-methylthio 2-oxobutyric acid (MTOB) can interfere with CtBP oncogenic activity in cell culture and in mice confirm that such inhibitors could have therapeutic benefit. Recent crystal structures of CtBP 1 and 2 revealed that MTOB binds in an active site containing a dominant tryptophan and a hydrophilic cavity, neither of which are present in other D2-HDH family members. Here, we demonstrate the effectiveness of exploiting these active site features for the design of high affinity inhibitors. Crystal structures of two such compounds, phenylpyruvate (PPy) and 2-hydroxyimino-3-phenylpropanoic acid (HIPP), show binding with favorable ring stacking against the CtBP active site tryptophan and alternate modes of stabilizing the carboxylic acid moiety. Moreover, ITC experiments show that HIPP binds to CtBP with an affinity greater than 1000-fold over that of MTOB, and enzymatic assays confirm that HIPP substantially inhibits CtBP catalysis. These results, thus, provide an important step, and additional insights, for the development of highly selective antineoplastic CtBP inhibitors.


ACS Medicinal Chemistry Letters | 2014

Phenylalanine-Based Inactivator of AKT Kinase: Design, Synthesis, and Biological Evaluation.

Thuy Nguyen; Robert A. Coover; Jenson Verghese; Richard G. Moran; Keith C. Ellis

Strategies to inhibit kinases by targeting the substrate binding site offer many advantages, including naturally evolved selectivity filters, but normally suffer from poor potency. In this work we propose a strategy to design and prepare covalent substrate-competitive kinase inhibitors as a method to improve potency. We have chosen AKT as the model kinase for this work. Using the AKT-GSK3β cocrystal structure and a reactive cysteine near the substrate binding site, we have identified phenylalanine (Phe) as an appropriate scaffold for the covalent inactivator portion of these inhibitors. By synthesizing compounds that incorporate cysteine-reactive electrophiles into phenylalanine and testing these compounds as AKT inhibitors, we have identified Boc-Phe-vinyl ketone as a submicromolar inactivator of AKT. We also show that Boc-Phe-vinyl ketone (1) potently inhibits AKT1 and inhibits cell growth in HCT116 and H460 cells nearly as well as AKT inhibitors GSK690693 and MK-2206, (2) is selective for kinases that possess an activation loop cysteine such as AKT, (3) requires the vinyl ketone for inactivation, (4) has inactivation that is time-dependent, and (5) alkylates Cys310 of AKT as shown by mass spectrometry. Identification of Boc-Phe-vinyl ketone as a covalent inactivator of AKT will allow the development of peptide and small-molecule substrate-competitive covalent kinase inhibitors that incorporate additional substrate binding elements to increase selectivity and potency. This proof-of-principle study also provides a basis to apply this strategy to other kinases of the AGC and CAMK families.


Bioorganic & Medicinal Chemistry | 2016

Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

Sudha Korwar; Benjamin L. Morris; Hardik I. Parikh; Robert A. Coover; Tyler W. Doughty; Ian M. Love; Brendan J. Hilbert; William E. Royer; Glen E. Kellogg; Steven R. Grossman; Keith C. Ellis

C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.


Analytical Biochemistry | 2017

Characterization of PKACα enzyme kinetics and inhibition in an HPLC assay with a chromophoric substrate

Nicole M. Luzi; Charles E. Lyons; Darrell L. Peterson; Keith C. Ellis

Here we describe a convenient, inexpensive, and non-hazardous method for the measurement of the kinase activity of the catalytic subunit of cAMP-dependent protein kinase (PKACα). The assay is based on the separation of a substrate peptide labeled with a strong chromophore from the phosphorylated product peptide by high-performance liquid chromatograph (HPLC) and quantification of the product ratiometrically at a wavelength in the visual spectrum (Vis). The utility and reliability of the HPLC-Vis assay were demonstrated by characterizing the kinetic parameters (KM, Vmax) of the new Rh-MAB-Kemptide substrate, a commercially prepared TAMRA-Kemptide substrate, and ATP as well as the potency (IC50, Ki) of the known PKACα inhibitors H89 and PKI(5-24). The advantages of this assay are that it is convenient and inexpensive, uses readily synthesized or commercially available substrates that are shelf-stable, uses a common piece of laboratory equipment, and does not require any hazardous materials such as radioactive γ-32P-ATP. The assay format is also highly flexible and could be adapted for the testing of many different kinases by changing the peptide substrate sequence.

Collaboration


Dive into the Keith C. Ellis's collaboration.

Top Co-Authors

Avatar

Steven R. Grossman

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Sudha Korwar

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Thuy Nguyen

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Benjamin L. Morris

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William E. Royer

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

B. Frank Gupton

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Brendan J. Hilbert

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Charles E. Lyons

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge