Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith D. Coon is active.

Publication


Featured researches published by Keith D. Coon.


Neuron | 2007

GAB2 Alleles Modify Alzheimer's Risk in APOE ε4 Carriers

Eric M. Reiman; Jennifer A. Webster; Amanda J. Myers; John Hardy; Travis Dunckley; Victoria Zismann; Keta Joshipura; John V. Pearson; Diane Hu-Lince; Matthew J. Huentelman; David Craig; Keith D. Coon; Winnie S. Liang; RiLee H. Herbert; Thomas G. Beach; Kristen Rohrer; Alice S. Zhao; Doris Leung; Leslie Bryden; Lauren Marlowe; Mona Kaleem; Diego Mastroeni; Andrew Grover; Christopher B. Heward; Rivka Ravid; Joseph Rogers; Mike Hutton; Stacey Melquist; R. C. Petersen; Gene E. Alexander

The apolipoprotein E (APOE) epsilon4 allele is the best established genetic risk factor for late-onset Alzheimers disease (LOAD). We conducted genome-wide surveys of 502,627 single-nucleotide polymorphisms (SNPs) to characterize and confirm other LOAD susceptibility genes. In epsilon4 carriers from neuropathologically verified discovery, neuropathologically verified replication, and clinically characterized replication cohorts of 1411 cases and controls, LOAD was associated with six SNPs from the GRB-associated binding protein 2 (GAB2) gene and a common haplotype encompassing the entire GAB2 gene. SNP rs2373115 (p = 9 x 10(-11)) was associated with an odds ratio of 4.06 (confidence interval 2.81-14.69), which interacts with APOE epsilon4 to further modify risk. GAB2 was overexpressed in pathologically vulnerable neurons; the Gab2 protein was detected in neurons, tangle-bearing neurons, and dystrophic neuritis; and interference with GAB2 gene expression increased tau phosphorylation. Our findings suggest that GAB2 modifies LOAD risk in APOE epsilon4 carriers and influences Alzheimers neuropathology.


Nature Genetics | 2007

A survey of genetic human cortical gene expression

Amanda J. Myers; J. Raphael Gibbs; Jennifer A. Webster; Kristen Rohrer; Alice Zhao; Lauren Marlowe; Mona Kaleem; Doris Leung; Leslie Bryden; Priti Nath; Victoria Zismann; Keta Joshipura; Matthew J. Huentelman; Diane Hu-Lince; Keith D. Coon; David Craig; John V. Pearson; Peter Holmans; Christopher B. Heward; Eric M. Reiman; Dietrich A. Stephan; John Hardy

It is widely assumed that genetic differences in gene expression underpin much of the difference among individuals and many of the quantitative traits of interest to geneticists. Despite this, there has been little work on genetic variability in human gene expression and almost none in the human brain, because tools for assessing this genetic variability have not been available. Now, with whole-genome SNP genotyping arrays and whole-transcriptome expression arrays, such experiments have become feasible. We have carried out whole-genome genotyping and expression analysis on a series of 193 neuropathologically normal human brain samples using the Affymetrix GeneChip Human Mapping 500K Array Set and Illumina HumanRefseq-8 Expression BeadChip platforms. Here we present data showing that 58% of the transcriptome is cortically expressed in at least 5% of our samples and that of these cortically expressed transcripts, 21% have expression profiles that correlate with their genotype. These genetic-expression effects should be useful in determining the underlying biology of associations with common diseases of the human brain and in guiding the analysis of the genomic regions involved in the control of normal gene expression.


American Journal of Human Genetics | 2009

Genetic Control of Human Brain Transcript Expression in Alzheimer Disease

Jennifer A. Webster; J. Raphael Gibbs; Jennifer Clarke; Monika Ray; Weixiong Zhang; Peter Holmans; Kristen Rohrer; Alice Zhao; Lauren Marlowe; Mona Kaleem; Donald S. McCorquodale; Cindy Cuello; Doris Leung; Leslie Bryden; Priti Nath; Victoria Zismann; Keta Joshipura; Matthew J. Huentelman; Diane Hu-Lince; Keith D. Coon; David Craig; John V. Pearson; Christopher B. Heward; Eric M. Reiman; Dietrich A. Stephan; John Hardy; Amanda J. Myers

We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.


Neurobiology of Aging | 2006

Gene expression correlates of neurofibrillary tangles in Alzheimer's disease.

Travis Dunckley; Thomas G. Beach; Keri Ramsey; Andrew Grover; Diego Mastroeni; Douglas G. Walker; Bonnie LaFleur; Keith D. Coon; Kevin M. Brown; Richard J. Caselli; Walter A. Kukull; Roger Higdon; Daniel W. McKeel; John C. Morris; Christine M. Hulette; Donald E. Schmechel; Eric M. Reiman; Joseph Rogers; Dietrich A. Stephan

Neurofibrillary tangles (NFT) constitute one of the cardinal histopathological features of Alzheimers disease (AD). To explore in vivo molecular processes involved in the development of NFTs, we compared gene expression profiles of NFT-bearing entorhinal cortex neurons from 19 AD patients, adjacent non-NFT-bearing entorhinal cortex neurons from the same patients, and non-NFT-bearing entorhinal cortex neurons from 14 non-demented, histopathologically normal controls (ND). Of the differentially expressed genes, 225 showed progressively increased expression (AD NFT neurons > AD non-NFT neurons > ND non-NFT neurons) or progressively decreased expression (AD NFT neurons < AD non-NFT neurons < ND non-NFT neurons), raising the possibility that they may be related to the early stages of NFT formation. Immunohistochemical studies confirmed that many of the implicated proteins are dysregulated and preferentially localized to NFTs, including apolipoprotein J, interleukin-1 receptor-associated kinase 1, tissue inhibitor of metalloproteinase 3, and casein kinase 2, beta. Functional validation studies are underway to determine which candidate genes may be causally related to NFT neuropathology, thus providing therapeutic targets for the treatment of AD.


Neurobiology of Aging | 2010

Evidence for an association between KIBRA and late-onset Alzheimer's disease

Jason J. Corneveaux; Winnie S. Liang; Eric M. Reiman; Jennifer A. Webster; Amanda J. Myers; Victoria Zismann; Keta Joshipura; John V. Pearson; Diane Hu-Lince; David Craig; Keith D. Coon; Travis Dunckley; Daniel Bandy; Wendy Lee; Kewei Chen; Thomas G. Beach; Diego Mastroeni; Andrew Grover; Rivka Ravid; Sigrid Botne Sando; Jan O. Aasly; Reinhard Heun; Frank Jessen; Heike Kölsch; Joseph G. Rogers; Mike Hutton; Stacey Melquist; R. C. Petersen; Gene E. Alexander; Richard J. Caselli

We recently reported evidence for an association between the individual variation in normal human episodic memory and a common variant of the KIBRA gene, KIBRA rs17070145 (T-allele). Since memory impairment is a cardinal clinical feature of Alzheimers disease (AD), we investigated the possibility of an association between the KIBRA gene and AD using data from neuronal gene expression, brain imaging studies, and genetic association tests. KIBRA was significantly over-expressed and three of its four known binding partners under-expressed in AD-affected hippocampal, posterior cingulate and temporal cortex regions (P<0.010, corrected) in a study of laser-capture microdissected neurons. Using positron emission tomography in a cohort of cognitively normal, late-middle-aged persons genotyped for KIBRA rs17070145, KIBRA T non-carriers exhibited lower glucose metabolism than did carriers in posterior cingulate and precuneus brain regions (P<0.001, uncorrected). Lastly, non-carriers of the KIBRA rs17070145 T-allele had increased risk of late-onset AD in an association study of 702 neuropathologically verified expired subjects (P=0.034; OR=1.29) and in a combined analysis of 1026 additional living and expired subjects (P=0.039; OR=1.26). Our findings suggest that KIBRA is associated with both individual variation in normal episodic memory and predisposition to AD.


Neurodegenerative Diseases | 2008

Sorl1 as an Alzheimer’s Disease Predisposition Gene?

Jennifer A. Webster; Amanda J. Myers; John V. Pearson; David Craig; Diane Hu-Lince; Keith D. Coon; Victoria Zismann; Thomas G. Beach; Doris Leung; Leslie Bryden; Rebecca F. Halperin; Lauren Marlowe; Mona Kaleem; Matthew J. Huentelman; Keta Joshipura; Douglas G. Walker; Christopher B. Heward; Rivka Ravid; Joseph Rogers; Andreas Papassotiropoulos; J. Hardy; Eric M. Reiman; Dietrich A. Stephan

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressively disabling impairments in memory, cognition, and non-cognitive behavioural symptoms. Sporadic AD is multifactorial and genetically complex. While several monogenic mutations cause early-onset AD and gene alleles have been suggested as AD susceptibility factors, the only extensively validated susceptibility gene for late-onset AD is the apolipoprotein E (APOE) Ε4 allele. Alleles of the APOE gene do not account for all of the genetic load calculated to be responsible for AD predisposition. Recently, polymorphisms across the neuronal sortilin-related receptor (SORL1) gene were shown to be significantly associated with AD in several cohorts. Here we present the results of our large case-control whole-genome scan at over 500,000 polymorphisms which presents weak evidence for association and potentially narrows the association interval.


Drug Discovery Today | 2005

Discovery and development of biomarkers of neurological disease.

Travis Dunckley; Keith D. Coon; Dietrich A. Stephan

The identification of clinically relevant biomarkers for neurological diseases poses unique challenges. These include an historical lack of availability of relevant tissues from the site of pathology, relatively poorly matured techniques for disease diagnosis, the complexity and cellular heterogeneity of the brain, and a clear deficiency of models for functional validation of candidate biomarkers. Here, the unique challenges that neurological disorders introduce to biomarker discovery are described and how modern technological advances in genomics, proteomics and metabolomics are overcoming these obstacles and are driving the discovery of novel biomarkers to improve early diagnosis and therapeutic treatment is discussed.


American Journal of Human Genetics | 2007

Identification of a Novel Risk Locus for Progressive Supranuclear Palsy by a Pooled Genomewide Scan of 500,288 Single-Nucleotide Polymorphisms

Stacey Melquist; David Craig; Matthew J. Huentelman; Richard Crook; John V. Pearson; Matt Baker; Victoria Zismann; Jennifer Gass; Jennifer Adamson; Szabolcs Szelinger; Jason J. Corneveaux; Ashley Cannon; Keith D. Coon; Sarah Lincoln; Charles H. Adler; Paul Tuite; Donald B. Calne; Eileen H. Bigio; Ryan J. Uitti; Zbigniew K. Wszolek; Lawrence I. Golbe; Richard J. Caselli; Neill R. Graff-Radford; Irene Litvan; Matthew J. Farrer; Dennis W. Dickson; Mike Hutton; Dietrich A. Stephan

To date, only the H1 MAPT haplotype has been consistently associated with risk of developing the neurodegenerative disease progressive supranuclear palsy (PSP). We hypothesized that additional genetic loci may be involved in conferring risk of PSP that could be identified through a pooling-based genomewide association study of >500,000 SNPs. Candidate SNPs with large differences in allelic frequency were identified by ranking all SNPs by their probe-intensity difference between cohorts. The MAPT H1 haplotype was strongly detected by this methodology, as was a second major locus on chromosome 11p12-p11 that showed evidence of association at allelic (P<.001), genotypic (P<.001), and haplotypic (P<.001) levels and was narrowed to a single haplotype block containing the DNA damage-binding protein 2 (DDB2) and lysosomal acid phosphatase 2 (ACP2) genes. Since DNA damage and lysosomal dysfunction have been implicated in aging and neurodegenerative processes, both genes are viable candidates for conferring risk of disease.


Neurology | 2008

Study of a Swiss dopa-responsive dystonia family with a deletion in GCH1: Redefining DYT14 as DYT5

Christian Wider; Stacey Melquist; M. Hauf; Alessandra Solida; Stephanie A. Cobb; Jennifer M. Kachergus; Jennifer Gass; Keith D. Coon; Matt Baker; Ashley Cannon; Dietrich A. Stephan; D Schorderet; J. Ghika; Pierre Burkhard; Gregory Kapatos; Mike Hutton; Matthew J. Farrer; Zbigniew K. Wszolek; François Vingerhoets

Objective: To report the study of a multigenerational Swiss family with dopa-responsive dystonia (DRD). Methods: Clinical investigation was made of available family members, including historical and chart reviews. Subject examinations were video recorded. Genetic analysis included a genome-wide linkage study with microsatellite markers (STR), GTP cyclohydrolase I (GCH1) gene sequencing, and dosage analysis. Results: We evaluated 32 individuals, of whom 6 were clinically diagnosed with DRD, with childhood-onset progressive foot dystonia, later generalizing, followed by parkinsonism in the two older patients. The response to levodopa was very good. Two additional patients had late onset dopa-responsive parkinsonism. Three other subjects had DRD symptoms on historical grounds. We found suggestive linkage to the previously reported DYT14 locus, which excluded GCH1. However, further study with more stringent criteria for disease status attribution showed linkage to a larger region, which included GCH1. No mutation was found in GCH1 by gene sequencing but dosage methods identified a novel heterozygous deletion of exons 3 to 6 of GCH1. The mutation was found in seven subjects. One of the patients with dystonia represented a phenocopy. Conclusions: This study rules out the previously reported DYT14 locus as a cause of disease, as a novel multiexonic deletion was identified in GCH1. This work highlights the necessity of an accurate clinical diagnosis in linkage studies as well as the need for appropriate allele frequencies, penetrance, and phenocopy estimates. Comprehensive sequencing and dosage analysis of known genes is recommended prior to genome-wide linkage analysis. GLOSSARY: DRD = dopa-responsive dystonia; GCH1 = GTP cyclohydrolase I; SNP = single nucleotide polymorphisms; STR = short tandem repeats.


The Journal of Thoracic and Cardiovascular Surgery | 2009

Expression of LKB1 tumor suppressor in non–small cell lung cancer determines sensitivity to 2-deoxyglucose

Landon J. Inge; Keith D. Coon; Michael A. Smith; Ross M. Bremner

OBJECTIVE Targeted therapy promises to improve patient outcome in non-small cell lung cancer. Biomarkers can direct targeted therapy toward patients who are most likely to respond, thus optimizing benefit. A novel agent with antineoplastic potential is the glucose analog, 2-deoxyglucose. 2-Deoxyglucose targets tumor cells, owing to their increased glucose uptake, inhibiting cellular metabolism and inducing energetic stress, resulting in decreased cellular viability. The tumor suppressor LKB1 is activated by energetic stress, and cells that lack LKB1 fail to respond and undergo cell death, suggesting that LKB1-null non-small cell lung cancer may have an increased susceptibility to 2-deoxyglucose. Inasmuch as somatic loss of LKB1 is a frequent event in non-small cell lung cancer, LKB1 expression could be used as a biomarker for directing 2-deoxyglucose therapy in patients with this type of cancer. METHODS LKB1-positive and LKB1-negative non-small cell lung cancer cell lines were evaluated for cell viability, markers of apoptosis, and gene expression after 2-deoxyglucose treatment and compared with vehicle control. RESULTS LKB1-negative cells treated with 2-deoxyglucose displayed a significant decrease in cell viability compared with LKB1-positive cells. Gene expression profiles of 2-deoxyglucose treated cells revealed changes in apoptotic markers in LKB1-negative cells, correlating with activation of apoptosis. Re-expression of LKB1 prevented 2-deoxyglucose mediated apoptosis, demonstrating the critical role of LKB1 in mediating 2-deoxyglucose toxicity. CONCLUSIONS LKB1 loss increases susceptibility to 2-deoxyglucose treatment in non-small cell lung cancer lines, even at low doses. Thus, determination of LKB1 status may help direct therapy to those patients most likely to benefit from this novel approach, making it useful in the treatment of patients with non-small cell lung cancer.

Collaboration


Dive into the Keith D. Coon's collaboration.

Top Co-Authors

Avatar

Dietrich A. Stephan

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John V. Pearson

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

David Craig

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Victoria Zismann

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer A. Webster

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Huentelman

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher B. Heward

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Diane Hu-Lince

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge