Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith E. Tansey is active.

Publication


Featured researches published by Keith E. Tansey.


The Journal of Neuroscience | 2004

Reactive Astrocytes Protect Tissue and Preserve Function after Spinal Cord Injury

Jill R. Faulkner; Julia E. Herrmann; Michael J. Woo; Keith E. Tansey; Ngan B. Doan; Michael V. Sofroniew

Reactive astrocytes are prominent in the cellular response to spinal cord injury (SCI), but their roles are not well understood. We used a transgenic mouse model to study the consequences of selective and conditional ablation of reactive astrocytes after stab or crush SCI. Mice expressing a glial fibrillary acid protein-herpes simplex virus-thymidine kinase transgene were given mild or moderate SCI and treated with the antiviral agent ganciclovir (GCV) to ablate dividing, reactive, transgene-expressing astrocytes in the immediate vicinity of the SCI. Small stab injuries in control mice caused little tissue disruption, little demyelination, no obvious neuronal death, and mild, reversible functional impairments. Equivalent small stab injuries in transgenic mice given GCV to ablate reactive astrocytes caused failure of blood-brain barrier repair, leukocyte infiltration, local tissue disruption, severe demyelination, neuronal and oligodendrocyte death, and pronounced motor deficits. Moderate crush injuries in control mice caused focal tissue disruption and cellular degeneration, with moderate, primarily reversible motor impairments. Equivalent moderate crush injuries combined with ablation of reactive astrocytes caused widespread tissue disruption, pronounced cellular degeneration, and failure of wound contraction, with severe persisting motor deficits. These findings show that reactive astrocytes provide essential activities that protect tissue and preserve function after mild or moderate SCI. In nontransgenic animals, crush or contusion SCIs routinely exhibit regions of degenerated tissue that are devoid of astrocytes. Our findings suggest that identifying ways to preserve reactive astrocytes, to augment their protective functions, or both, may lead to novel approaches to reducing secondary tissue degeneration and improving functional outcome after SCI.


The Journal of Neuroscience | 2006

Blocking Soluble Tumor Necrosis Factor Signaling with Dominant-Negative Tumor Necrosis Factor Inhibitor Attenuates Loss of Dopaminergic Neurons in Models of Parkinson's Disease

Melissa K. McCoy; Terina N. Martinez; Kelly A. Ruhn; David E. Szymkowski; Christine G. Smith; B. R. Botterman; Keith E. Tansey; Malú G. Tansey

The mechanisms that trigger or contribute to loss of dopaminergic (DA) neurons in Parkinsons disease (PD) remain unclear and controversial. Elevated levels of tumor necrosis factor (TNF) in CSF and postmortem brains of PD patients and animal models of PD implicate this proinflammatory cytokine in the pathophysiology of the disease; but a role for TNF in mediating loss of DA neurons in PD has not been clearly demonstrated. Here, we report that neutralization of soluble TNF (solTNF) in vivo with the engineered dominant-negative TNF compound XENP345 (a PEGylated version of the TNF variant A145R/I97T) reduced by 50% the retrograde nigral degeneration induced by a striatal injection of the oxidative neurotoxin 6-hydroxydopamine (6-OHDA). XENP345 was neuroprotective only when infused into the nigra, not the striatum. XENP345/6-OHDA rats displayed attenuated amphetamine-induced rotational behavior, indicating preservation of striatal dopamine levels. Similar protective effects were observed with chronic in vivo coinfusion of XENP345 with bacterial lipopolysaccharide (LPS) into the substantia nigra, confirming a role for solTNF-dependent neuroinflammation in nigral degeneration. In embryonic rat midbrain neuron/glia cell cultures exposed to LPS, even delayed administration of XENP345 prevented selective degeneration of DA neurons despite sustained microglia activation and secretion of solTNF. XENP345 also attenuated 6-OHDA-induced DA neuron toxicity in vitro. Collectively, our data demonstrate a role for TNF in vitro and in vivo in two models of PD, and raise the possibility that delaying the progressive degeneration of the nigrostriatal pathway in humans is therapeutically feasible with agents capable of blocking solTNF in early stages of PD.


Neurorehabilitation and Neural Repair | 2005

Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury.

Patricia Winchester; Roderick McColl; R. G. Querry; Nathan Foreman; James Mosby; Keith E. Tansey; Jon W. Williamson

Objectives. Body weight-supported treadmill training (BWSTT) is a task-specific rehabilitation strategy that enhances functional locomotion in patients following spinal cord injury (SCI). Supraspinal centers may play an important role in the recovery of over-ground locomotor function in patients with motor-incomplete SCI. The purpose of this study was to evaluate the potential for supraspinal reorganization associated with 12 weeks of robotic BWSTT using functional magnetic resonance imaging (fMRI). Methods. Four men with motor-incomplete SCI participated in this study. Time since onset ranged from 14 weeks to 48 months post-SCI injury. All subjects were trained with BWSTT 3 times weekly for 12 weeks. This training was preceded and followed by fMRI study of supraspinal activity during a movement task. Testing of locomotor disability included the Walking Index for Spinal Cord Injury (WISCI II) and over-ground gait speed. Results. All subjects demonstrated some degree of change in the blood-oxygen-level-dependent (BOLD) signal following BWSTT. fMRI results demonstrated greater activation in sensorimotor cortical regions (S1, S2) and cerebellar regions following BWSTT. Conclusions. Intensive task-specific rehabilitative training, such as robotic BWSTT, can promote supraspinal plasticity in the motor centers known to be involved in locomotion. Furthermore, improvement in over-ground locomotion is accompanied by an increased activation of the cerebellum.


The Journal of Neuroscience | 2007

Changes in Motoneuron Properties and Synaptic Inputs Related to Step Training after Spinal Cord Transection in Rats

Jeffrey C. Petruska; Ronaldo M. Ichiyama; Devin L. Jindrich; Eric D. Crown; Keith E. Tansey; Roland R. Roy; V. Reggie Edgerton; Lorne M. Mendell

Although recovery from spinal cord injury is generally meager, evidence suggests that step training can improve stepping performance, particularly after neonatal spinal injury. The location and nature of the changes in neural substrates underlying the behavioral improvements are not well understood. We examined the kinematics of stepping performance and cellular and synaptic electrophysiological parameters in ankle extensor motoneurons in nontrained and treadmill-trained rats, all receiving a complete spinal transection as neonates. For comparison, electrophysiological experiments included animals injured as young adults, which are far less responsive to training. Recovery of treadmill stepping was associated with significant changes in the cellular properties of motoneurons and their synaptic input from spinal white matter [ipsilateral ventrolateral funiculus (VLF)] and muscle spindle afferents. A strong correlation was found between the effectiveness of step training and the amplitude of both the action potential afterhyperpolarization and synaptic inputs to motoneurons (from peripheral nerve and VLF). These changes were absent if step training was unsuccessful, but other spinal projections, apparently inhibitory to step training, became evident. Greater plasticity of axonal projections after neonatal than after adult injury was suggested by anatomical demonstration of denser VLF projections to hindlimb motoneurons after neonatal injury. This finding confirmed electrophysiological measurements and provides a possible mechanism underlying the greater training susceptibility of animals injured as neonates. Thus, we have demonstrated an “age-at-injury”-related difference that may influence training effectiveness, that successful treadmill step training can alter electrophysiological parameters in the transected spinal cord, and that activation of different pathways may prevent functional improvement.


Experimental Neurology | 2008

Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease

Melissa K. McCoy; Terina N. Martinez; Kelly A. Ruhn; Philip C. Wrage; Edward W. Keefer; B. R. Botterman; Keith E. Tansey; Malú G. Tansey

Adult adipose contains stromal progenitor cells with neurogenic potential. However, the stability of neuronal phenotypes adopted by Adipose-Derived Adult Stromal (ADAS) cells and whether terminal neuronal differentiation is required for their consideration as alternatives in cell replacement strategies to treat neurological disorders is largely unknown. We investigated whether in vitro neural induction of ADAS cells determined their ability to neuroprotect or restore function in a lesioned dopaminergic pathway. In vitro-expanded naïve or differentiated ADAS cells were autologously transplanted into substantia nigra 1 week after an intrastriatal 6-hydroxydopamine injection. Neurochemical and behavioral measures demonstrated neuroprotective effects of both ADAS grafts against 6-hydroxydopamine-induced dopaminergic neuron death, suggesting that pre-transplantation differentiation of the cells does not determine their ability to survive or neuroprotect in vivo. Therefore, we investigated whether equivalent protection by naïve and neurally-induced ADAS grafts resulted from robust in situ differentiation of both graft types into dopaminergic fates. Immunohistological analyses revealed that ADAS cells did not adopt dopaminergic cell fates in situ, consistent with the limited ability of these cells to undergo terminal differentiation into electrically active neurons in vitro. Moreover, re-exposure of neurally-differentiated ADAS cells to serum-containing medium in vitro confirmed ADAS cell phenotypic instability (plasticity). Lastly, given that gene expression analyses of in vitro-expanded ADAS cells revealed that both naïve and differentiated ADAS cells express potent dopaminergic survival factors, ADAS transplants may have exerted neuroprotective effects by production of trophic factors at the lesion site. ADAS cells may be ideal for ex vivo gene transfer therapies in Parkinsons disease treatment.


Spinal Cord | 2011

United States (US) multi-center study to assess the validity and reliability of the Spinal Cord Independence Measure (SCIM III)

Kim D. Anderson; M. E. Acuff; B. G. Arp; Deborah Backus; S. Chun; K. Fisher; J. E. Fjerstad; D. E. Graves; K. Greenwald; Suzanne Groah; Susan J. Harkema; J. A. Horton; M. N. Huang; M. Jennings; K. S. Kelley; S. M. Kessler; Steven Kirshblum; S. Koltenuk; M. Linke; I. Ljungberg; Janos Nagy; L. Nicolini; M. J. Roach; S. Salles; W. M. Scelza; Mary Schmidt Read; Ronald K. Reeves; Michael Scott; Keith E. Tansey; J. L. Theis

Study design:Multi-center, prospective, cohort study.Objectives:To assess the validity and reliability of the Spinal Cord Independence Measure (SCIM III) in measuring functional ability in persons with spinal cord injury (SCI).Setting:Inpatient rehabilitation hospitals in the United States (US).Methods:Functional ability was measured with the SCIM III during the first week of admittance into inpatient acute rehabilitation and within one week of discharge from the same rehabilitation program. Motor and sensory neurologic impairment was measured with the American Spinal Injury Association Impairment Scale. The Functional Independence Measure (FIM), the default functional measure currently used in most US hospitals, was used as a comparison standard for the SCIM III. Statistical analyses were used to test the validity and reliability of the SCIM III.Results:Total agreement between raters was above 70% on most SCIM III tasks and all κ-coefficients were statistically significant (P<0.001). The coefficients of Pearson correlation between the paired raters were above 0.81 and intraclass correlation coefficients were above 0.81. Cronbach’s-α was above 0.7, with the exception of the respiration task. The coefficient of Pearson correlation between the FIM and SCIM III was 0.8 (P<0.001). For the respiration and sphincter management subscale, the SCIM III was more responsive to change, than the FIM (P<0.0001).Conclusion:Overall, the SCIM III is a reliable and valid measure of functional change in SCI. However, improved scoring instructions and a few modifications to the scoring categories may reduce variability between raters and enhance clinical utility.


Clinical Neurology and Neurosurgery | 2012

Neuromodulation of lower limb motor control in restorative neurology

Karen Minassian; Ursula S. Hofstoetter; Keith E. Tansey; Winfried Mayr

One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system.


Journal of Spinal Cord Medicine | 2014

Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury

Ursula S. Hofstoetter; William B. McKay; Keith E. Tansey; Winfried Mayr; Helmut Kern; Karen Minassian

Abstract Context/objective To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. Design Interventional pilot study to produce preliminary data. Setting Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. Participants Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. Interventions Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. Outcome measures The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. Results The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. Conclusion These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted.


Spinal Cord | 2015

Common data elements for spinal cord injury clinical research: a National Institute for Neurological Disorders and Stroke project

Fin Biering-Sørensen; Sherita Ala'i; Kim D. Anderson; Susan Charlifue; Yuying Chen; Michael J. DeVivo; Adam E. Flanders; Linda Jones; Naomi Kleitman; Aria Lans; Vanessa K. Noonan; Joanne Odenkirchen; John D. Steeves; Keith E. Tansey; Eva G. Widerström-Noga; Lyn B. Jakeman

Objectives:To develop a comprehensive set of common data elements (CDEs), data definitions, case report forms and guidelines for use in spinal cord injury (SCI) clinical research, as part of the CDE project at the National Institute of Neurological Disorders and Stroke (NINDS) of the US National Institutes of Health.Setting:International Working Groups.Methods:Nine working groups composed of international experts reviewed existing CDEs and instruments, created new elements when needed and provided recommendations for SCI clinical research. The project was carried out in collaboration with and cross-referenced to development of the International Spinal Cord Society (ISCoS) International SCI Data Sets. The recommendations were compiled, subjected to internal review and posted online for external public comment. The final version was reviewed by all working groups and the NINDS CDE team before release.Results:The NINDS SCI CDEs and supporting documents are publically available on the NINDS CDE website and the ISCoS website. The CDEs span the continuum of SCI care and the full range of domains of the International Classification of Functioning, Disability and Health.Conclusion:Widespread use of CDEs can facilitate SCI clinical research and trial design, data sharing and retrospective analyses. Continued international collaboration will enable consistent data collection and reporting, and will help ensure that the data elements are updated, reviewed and broadcast as additional evidence is obtained.


Spinal Cord | 2015

Challenges for defining minimal clinically important difference (MCID) after spinal cord injury

Xiaoliang Wu; Jie Liu; Lorenzo G. Tanadini; Daniel P. Lammertse; Andrew R. Blight; John K. Kramer; Giorgio Scivoletto; Linda Jones; Steven Kirshblum; Rainer Abel; James W. Fawcett; Edelle C. Field-Fote; James D. Guest; Ben Levinson; Doris Maier; Keith E. Tansey; Norbert Weidner; Wolfram Tetzlaff; Torsten Hothorn; Armin Curt; John D. Steeves

Study design:This is a review article.Objectives:This study discusses the following: (1) concepts and constraints for the determination of minimal clinically important difference (MCID), (2) the contrasts between MCID and minimal detectable difference (MDD), (3) MCID within the different domains of International Classification of Functioning, disability and health, (4) the roles of clinical investigators and clinical participants in defining MCID and (5) the implementation of MCID in acute versus chronic spinal cord injury (SCI) studies.Methods:The methods include narrative reviews of SCI outcomes, a 2-day meeting of the authors and statistical methods of analysis representing MDD.Results:The data from SCI study outcomes are dependent on many elements, including the following: the level and severity of SCI, the heterogeneity within each study cohort, the therapeutic target, the nature of the therapy, any confounding influences or comorbidities, the assessment times relative to the date of injury, the outcome measurement instrument and the clinical end-point threshold used to determine a treatment effect. Even if statistically significant differences can be established, this finding does not guarantee that the experimental therapeutic provides a person living with SCI an improved capacity for functional independence and/or an increased quality of life. The MDD statistical concept describes the smallest real change in the specified outcome, beyond measurement error, and it should not be confused with the minimum threshold for demonstrating a clinical benefit or MCID. Unfortunately, MCID and MDD are not uncomplicated estimations; nevertheless, any MCID should exceed the expected MDD plus any probable spontaneous recovery.Conclusion:Estimation of an MCID for SCI remains elusive. In the interim, if the target of a therapeutic is the injured spinal cord, it is most desirable that any improvement in neurological status be correlated with a functional (meaningful) benefit.

Collaboration


Dive into the Keith E. Tansey's collaboration.

Top Co-Authors

Avatar

Winfried Mayr

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

B. R. Botterman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Karen Minassian

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiko K. Thompson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane L. Damiano

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan F. Bean

Spaulding Rehabilitation Hospital

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. Ottenbacher

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge