Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith Hamilton is active.

Publication


Featured researches published by Keith Hamilton.


Journal of Structural Biology | 2010

The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium

Rong Xiao; Stephen Anderson; James M. Aramini; Rachel Belote; William A. Buchwald; Colleen Ciccosanti; Ken Conover; John K. Everett; Keith Hamilton; Yuanpeng Janet Huang; Haleema Janjua; Mei Jiang; Gregory J. Kornhaber; Dong Yup Lee; Jessica Y. Locke; Li Chung Ma; Melissa Maglaqui; Lei Mao; Saheli Mitra; Dayaban Patel; Paolo Rossi; Seema Sahdev; Seema Sharma; Ritu Shastry; G. V. T. Swapna; Saichu N. Tong; Dongyan Wang; Huang Wang; Li Zhao; Gaetano T. Montelione

We describe the core Protein Production Platform of the Northeast Structural Genomics Consortium (NESG) and outline the strategies used for producing high-quality protein samples. The platform is centered on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems. The 6X-His tag allows for similar purification procedures for most targets and implementation of high-throughput (HTP) parallel methods. In most cases, the 6X-His-tagged proteins are sufficiently purified (>97% homogeneity) using a HTP two-step purification protocol for most structural studies. Using this platform, the open reading frames of over 16,000 different targeted proteins (or domains) have been cloned as>26,000 constructs. Over the past 10 years, more than 16,000 of these expressed protein, and more than 4400 proteins (or domains) have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html). Using these samples, the NESG has deposited more than 900 new protein structures to the Protein Data Bank (PDB). The methods described here are effective in producing eukaryotic and prokaryotic protein samples in E. coli. This paper summarizes some of the updates made to the protein production pipeline in the last 5 years, corresponding to phase 2 of the NIGMS Protein Structure Initiative (PSI-2) project. The NESG Protein Production Platform is suitable for implementation in a large individual laboratory or by a small group of collaborating investigators. These advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are of broad value to the structural biology, functional proteomics, and structural genomics communities.


Methods in Enzymology | 2011

Preparation of protein samples for NMR structure, function, and small-molecule screening studies.

Thomas B. Acton; Rong Xiao; Stephen Anderson; James M. Aramini; William A. Buchwald; Colleen Ciccosanti; Ken Conover; John K. Everett; Keith Hamilton; Yuanpeng Janet Huang; Haleema Janjua; Gregory J. Kornhaber; Jessica Lau; Dong Yup Lee; Gaohua Liu; Melissa Maglaqui; Li-Chung Ma; Lei Mao; Dayaban Patel; Paolo Rossi; Seema Sahdev; Ritu Shastry; G.V.T. Swapna; Yeufeng Tang; Saichiu Tong; Dongyan Wang; Huang Wang; Li Zhao; Gaetano T. Montelione

In this chapter, we concentrate on the production of high-quality protein samples for nuclear magnetic resonance (NMR) studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium and outline our high-throughput strategies for producing high-quality protein samples for NMR studies. Our strategy is based on the cloning, expression, and purification of 6×-His-tagged proteins using T7-based Escherichia coli systems and isotope enrichment in minimal media. We describe 96-well ligation-independent cloning and analytical expression systems, parallel preparative scale fermentation, and high-throughput purification protocols. The 6×-His affinity tag allows for a similar two-step purification procedure implemented in a parallel high-throughput fashion that routinely results in purity levels sufficient for NMR studies (>97% homogeneity). Using this platform, the protein open reading frames of over 17,500 different targeted proteins (or domains) have been cloned as over 28,000 constructs. Nearly 5000 of these proteins have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html), resulting in more than 950 new protein structures, including more than 400 NMR structures, deposited in the Protein Data Bank. The Northeast Structural Genomics Consortium pipeline has been effective in producing protein samples of both prokaryotic and eukaryotic origin. Although this chapter describes our entire pipeline for producing isotope-enriched protein samples, it focuses on the major updates introduced during the last 5 years (Phase 2 of the National Institute of General Medical Sciences Protein Structure Initiative). Our advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are suitable for implementation in a large individual laboratory or by a small group of collaborating investigators for structural biology, functional proteomics, ligand screening, and structural genomics research.


Journal of Molecular Biology | 2013

Computational Design of a Protein-Based Enzyme Inhibitor

Erik Procko; Rickard Hedman; Keith Hamilton; Jayaraman Seetharaman; Sarel J. Fleishman; Min Su; James M. Aramini; Gregory J. Kornhaber; John F. Hunt; Liang Tong; Gaetano T. Montelione; David Baker

While there has been considerable progress in designing protein-protein interactions, the design of proteins that bind polar surfaces is an unmet challenge. We describe the computational design of a protein that binds the acidic active site of hen egg lysozyme and inhibits the enzyme. The design process starts with two polar amino acids that fit deep into the enzyme active site, identifies a protein scaffold that supports these residues and is complementary in shape to the lysozyme active-site region, and finally optimizes the surrounding contact surface for high-affinity binding. Following affinity maturation, a protein designed using this method bound lysozyme with low nanomolar affinity, and a combination of NMR studies, crystallography, and knockout mutagenesis confirmed the designed binding surface and orientation. Saturation mutagenesis with selection and deep sequencing demonstrated that specific designed interactions extending well beyond the centrally grafted polar residues are critical for high-affinity binding.


Journal of Biological Chemistry | 2011

Dimer Interface of the Effector Domain of Non-structural Protein 1 from Influenza A Virus AN INTERFACE WITH MULTIPLE FUNCTIONS

James M. Aramini; Li Chung Ma; Ligang Zhou; Curtis M. Schauder; Keith Hamilton; Brendan R. Amer; Timothy R. Mack; Hsiau Wei Lee; Colleen Ciccosanti; Li Zhao; Rong Xiao; Robert M. Krug; Gaetano T. Montelione

Non-structural protein 1 from influenza A virus, NS1A, is a key multifunctional virulence factor composed of two domains: an N-terminal double-stranded RNA (dsRNA)-binding domain and a C-terminal effector domain (ED). Isolated RNA-binding and effector domains of NS1A both exist as homodimers in solution. Despite recent crystal structures of isolated ED and full-length NS1A proteins from different influenza virus strains, controversy remains over the actual biologically relevant ED dimer interface. Here, we report the biophysical properties of the NS1A ED from H3N2 influenza A/Udorn/307/1972 (Ud) virus in solution. Several lines of evidence, including 15N NMR relaxation, NMR chemical shift perturbations, static light scattering, and analytical sedimentation equilibrium, demonstrate that Ud NS1A ED forms a relatively weak dimer in solution (Kd = 90 ± 2 μm), featuring a symmetric helix-helix dimer interface. Mutations within and near this interface completely abolish dimerization, whereas mutations consistent with other proposed ED dimer interfaces have no effect on dimer formation. In addition, the critical Trp-187 residue in this interface serves as a sensitive NMR spectroscopic marker for the concentration-dependent dimerization of NS1A ED in solution. Finally, dynamic light scattering and gel shift binding experiments demonstrate that the ED interface plays a role in both the oligomerization and the dsRNA binding properties of the full-length NS1A protein. In particular, mutation of the critical tryptophan in the ED interface substantially reduces the propensity of full-length NS1A from different strains to oligomerize and results in a reduction in dsRNA binding affinity for full-length NS1A.


Molecular Medicine | 2015

Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses

Hyong Woo Choi; Miaoying Tian; Fei Song; Emilie Venereau; Alessandro Preti; Sang-Wook Park; Keith Hamilton; G. V. T. Swapna; Murli Manohar; Magali Moreau; Alessandra Agresti; Andrea Gorzanelli; Francesco De Marchis; Huang Wang; Marc A. Antonyak; Robert J. Micikas; Daniel R. Gentile; Richard A. Cerione; Frank C. Schroeder; Gaetano T. Montelione; Marco Bianchi; Daniel F. Klessig

Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin’s bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world’s longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.


Proteins | 2011

Solution NMR structure of photosystem II reaction center protein Psb28 from Synechocystis sp. Strain PCC 6803

Yunhuang Yang; Theresa A. Ramelot; John R. Cort; Dongyan Wang; Colleen Ciccosanti; Keith Hamilton; Rajesh Nair; Burkhard Rost; Thomas B. Acton; Rong Xiao; John K. Everett; Gaetano T. Montelione; Michael A. Kennedy

Oxygenic photosynthesis is initiated by photosystem II (PSII) in the thylakoid membranes of plants, algae and cyanobacteria. PSII is a multi-subunit pigment-protein complex responsible for splitting water into oxygen gas, hydrogen ions and electrons transferred to electron acceptors during photosynthesis.1 Two homologous membrane-spanning proteins D1 (PsbA) and D2 (PsbD) form the PSII complex core.1 Peripherally, two chlorophyll (Chl)-binding inner antenna proteins CP47 (PsbB) and CP43 (PsbC) are bound to the D1-D2 PSII complex core.1 These four large proteins are surrounded by a large number of smaller membrane proteins.2 Most of these small proteins have been observed in the crystal structures of the PSII complex from cyanobacteria.3,4 However, one small protein, Psb28, previously detected as a nonstoichiometric component of PSII,5 was not observed in the crystal structures indicating that Psb28 might not be a true PSII subunit. Recent studies revealed that Psb28 was preferentially bound to PSII core complex lacking CP43 (RC47) and involved in the biogenesis of CP47.6 Understanding the association of Psb28 with the PSII core complex should provide additional insight into its role in PSII-mediated function. However, the structure of Psb28 has remained unknown up until now. In this note, we report the solution NMR structure of Psb28 protein encoded by gene sll1398 [gi|952386] of Synechocystis sp. strain PCC 6803 (SWISS-PROT ID: PSB28_SYNY3, NESG target ID: SgR171).7 This protein, also named Psb13 or ycf79, belongs to the Psb28 protein family (Pfam ID: PF03912), which is currently made up of ~48 protein sequences (E score less than 0.001 using PSI-BLAST, Table S1). Both PSI-BLAST sequence similarity and Dali8 structure similarity searches indicate that this is the first atomic resolution structure available for the Psb28 family. ConSurf9 was used to identify conserved surface residues potentially involved in binding to the PSII core complex.10


Journal of Biological Chemistry | 2010

Structural Basis of O6-Alkylguanine Recognition by a Bacterial Alkyltransferase-like DNA Repair Protein

James M. Aramini; Julie L. Tubbs; Sreenivas Kanugula; Paolo Rossi; Asli Ertekin; Melissa Maglaqui; Keith Hamilton; Colleen Ciccosanti; Mei Jiang; Rong Xiao; Ta Tsen Soong; Burkhard Rost; Thomas B. Acton; John K. Everett; Anthony E. Pegg; John A. Tainer; Gaetano T. Montelione

Alkyltransferase-like proteins (ATLs) are a novel class of DNA repair proteins related to O6-alkylguanine-DNA alkyltransferases (AGTs) that tightly bind alkylated DNA and shunt the damaged DNA into the nucleotide excision repair pathway. Here, we present the first structure of a bacterial ATL, from Vibrio parahaemolyticus (vpAtl). We demonstrate that vpAtl adopts an AGT-like fold and that the protein is capable of tightly binding to O6-methylguanine-containing DNA and disrupting its repair by human AGT, a hallmark of ATLs. Mutation of highly conserved residues Tyr23 and Arg37 demonstrate their critical roles in a conserved mechanism of ATL binding to alkylated DNA. NMR relaxation data reveal a role for conformational plasticity in the guanine-lesion recognition cavity. Our results provide further evidence for the conserved role of ATLs in this primordial mechanism of DNA repair.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Molecular basis for the recognition of the human AAUAAA polyadenylation signal.

Yadong Sun; Yixiao Zhang; Keith Hamilton; James L. Manley; Yongsheng Shi; Thomas Walz; Liang Tong

Significance The AAUAAA polyadenylation signal (PAS) was identified more than 40 years ago, but it has remained a mystery how this signal is recognized at the molecular level, which is required for the 3′-end processing of nearly all eukaryotic messenger RNA precursors. We have determined the cryo-electron microscopy structure of a quaternary complex of human CPSF-160, WDR33, CPSF-30, and an AAUAAA RNA at 3.4-Å resolution. The AAUAAA PAS assumes an unusual conformation and is recognized directly by both CPSF-30 and WDR33. CPSF-160 functions as an essential scaffold and preorganizes CPSF-30 and WDR33 for high-affinity binding to AAUAAA. Our findings provide an elegant molecular explanation for how PAS sequences are recognized for mRNA 3′-end formation. Nearly all eukaryotic messenger RNA precursors must undergo cleavage and polyadenylation at their 3′-end for maturation. A crucial step in this process is the recognition of the AAUAAA polyadenylation signal (PAS), and the molecular mechanism of this recognition has been a long-standing problem. Here, we report the cryo-electron microscopy structure of a quaternary complex of human CPSF-160, WDR33, CPSF-30, and an AAUAAA RNA at 3.4-Å resolution. Strikingly, the AAUAAA PAS assumes an unusual conformation that allows this short motif to be bound directly by both CPSF-30 and WDR33. The A1 and A2 bases are recognized specifically by zinc finger 2 (ZF2) of CPSF-30 and the A4 and A5 bases by ZF3. Interestingly, the U3 and A6 bases form an intramolecular Hoogsteen base pair and directly contact WDR33. CPSF-160 functions as an essential scaffold and preorganizes CPSF-30 and WDR33 for high-affinity binding to AAUAAA. Our findings provide an elegant molecular explanation for how PAS sequences are recognized for mRNA 3′-end formation.


Nature Communications | 2017

Crystal structure of a Pseudomonas malonate decarboxylase holoenzyme hetero-tetramer

Riyaz Maderbocus; Blanche L. Fields; Keith Hamilton; Shukun Luo; Timothy H. Tran; Lars E. P. Dietrich; Liang Tong

Pseudomonas species and other aerobic bacteria have a biotin-independent malonate decarboxylase that is crucial for their utilization of malonate as the sole carbon and energy source. The malonate decarboxylase holoenzyme contains four subunits, having an acyl-carrier protein (MdcC subunit) with a distinct prosthetic group, as well as decarboxylase (MdcD–MdcE) and acyl-carrier protein transferase (MdcA) catalytic activities. Here we report the crystal structure of a Pseudomonas malonate decarboxylase hetero-tetramer, as well as biochemical and functional studies based on the structural information. We observe a malonate molecule in the active site of MdcA and we also determine the structure of malonate decarboxylase with CoA in the active site of MdcD–MdcE. Both structures provide molecular insights into malonate decarboxylase catalysis. Mutations in the hetero-tetramer interface can abolish holoenzyme formation. Mutations in the hetero-tetramer interface and the active sites can abolish Pseudomonas aeruginosa growth in a defined medium with malonate as the sole carbon source.Some aerobic bacteria contain a biotin-independent malonate decarboxylase (MDC), which allows them to use malonate as the sole carbon source. Here, the authors present the crystal structure of a Pseudomonas MDC and give insights into its catalytic mechanism and function.


Journal of Biomolecular NMR | 2010

A microscale protein NMR sample screening pipeline

Paolo Rossi; G.V.T. Swapna; Yuanpeng J. Huang; James M. Aramini; Clemens Anklin; Kenith Conover; Keith Hamilton; Rong Xiao; Thomas B. Acton; Asli Ertekin; John K. Everett; Gaetano T. Montelione

Collaboration


Dive into the Keith Hamilton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ritu Shastry

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge