Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith Harshman is active.

Publication


Featured researches published by Keith Harshman.


Nature Genetics | 2012

Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma

Sergey Igorievich Nikolaev; Donata Rimoldi; Christian Iseli; Armand Valsesia; Daniel Robyr; Corinne Gehrig; Keith Harshman; Michel Guipponi; Olesya Bukach; Vincent Zoete; Olivier Michielin; Katja Muehlethaler; Daniel E. Speiser; Jacques S. Beckmann; Ioannis Xenarios; Thanos D. Halazonetis; C. Victor Jongeneel; Brian J. Stevenson

We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample–specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The genome of the fire ant Solenopsis invicta

Yannick Wurm; John L. Wang; Miguel Corona; Sanne Nygaard; Brendan G. Hunt; Krista K. Ingram; Mingkwan Nipitwattanaphon; Dietrich Gotzek; Michiel B. Dijkstra; Jan Oettler; Fabien Comtesse; Cheng-Jen Shih; Wen-Jer Wu; Chin-Cheng Yang; Jérôme Thomas; Emmanuel Beaudoing; Sylvain Pradervand; Volker Flegel; Erin D. Cook; Roberto Fabbretti; Heinz Stockinger; Li Long; William G. Farmerie; Jane Oakey; Jacobus J. Boomsma; Pekka Pamilo; Soojin V. Yi; Jürgen Heinze; Michael A. D. Goodisman; Laurent Farinelli

Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.


Nature Genetics | 2009

Comparative genomic and phylogeographic analysis of Mycobacterium leprae.

Marc Monot; Nadine Honoré; Thierry Garnier; Nora Zidane; Diana Sherafi; Alberto Paniz-Mondolfi; Masanori Matsuoka; G. Michael Taylor; Helen D. Donoghue; Abi Bouwman; Simon Mays; Claire Watson; Diana N. J. Lockwood; Ali Khamispour; Yahya Dowlati; Shen Jianping; Thomas H. Rea; Lucio Vera-Cabrera; Mariane Martins de Araújo Stefani; Sayera Banu; Murdo Macdonald; Bishwa Raj Sapkota; John S. Spencer; Jérôme Thomas; Keith Harshman; Pushpendra Singh; Philippe Busso; Alexandre Gattiker; Jacques Rougemont; Patrick J. Brennan

Reductive evolution and massive pseudogene formation have shaped the 3.31-Mb genome of Mycobacterium leprae, an unculturable obligate pathogen that causes leprosy in humans. The complete genome sequence of M. leprae strain Br4923 from Brazil was obtained by conventional methods (6× coverage), and Illumina resequencing technology was used to obtain the sequences of strains Thai53 (38× coverage) and NHDP63 (46× coverage) from Thailand and the United States, respectively. Whole-genome comparisons with the previously sequenced TN strain from India revealed that the four strains share 99.995% sequence identity and differ only in 215 polymorphic sites, mainly SNPs, and by 5 pseudogenes. Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world. The 16 SNP subtypes showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.


PLOS Biology | 2012

Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

Gwendal Le Martelot; Donatella Canella; Laura Symul; Eugenia Migliavacca; Federica Gilardi; Robin Liechti; Olivier Martin; Keith Harshman; Mauro Delorenzi; Béatrice Desvergne; Winship Herr; Bart Deplancke; Ueli Schibler; Jacques Rougemont; Nicolas Guex; Nouria Hernandez; Felix Naef

Genome-wide rhythms in RNA polymerase II loading and dynamic chromatin remodeling underlie periodic gene expression during diurnal cycles in the mouse liver.


BioTechniques | 2010

Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs

Sylvain Pradervand; Johann Weber; Frédéric Lemoine; Floriane Consales; Alexandra Paillusson; Mélanie Dupasquier; Jérôme Thomas; Hannes Richter; Henrik Kaessmann; Emmanuel Beaudoing; Otto Hagenbüchle; Keith Harshman

Profiling microRNA (miRNA) expression is of widespread interest given the critical role of miRNAs in many cellular functions. Profiling can be achieved via hybridization-based (microarrays), sequencing-based, or amplification-based (quantitative reverse transcription-PCR, qPCR) technologies. Among these, microarrays face the significant challenge of accurately distinguishing between mature and immature miRNA forms, and different vendors have developed different methods to meet this challenge. Here we measure differential miRNA expression using the Affymetrix, Agilent, and Illumina microarray platforms, as well as qPCR (Applied Biosystems) and ultra high-throughput sequencing (Illumina). We show that the differential expression measurements are more divergent when the three types of microarrays are compared than when the Agilent microarray, qPCR, and sequencing technology measurements are compared, which exhibit a good overall concordance.


Clinical Cancer Research | 2013

Identification of Multiple Mechanisms of Resistance to Vemurafenib in a Patient with BRAFV600E-Mutated Cutaneous Melanoma Successfully Rechallenged after Progression

Emanuela Romano; Sylvain Pradervand; Alexandra Paillusson; Johann Weber; Keith Harshman; Katja Muehlethaler; Daniel E. Speiser; Solange Peters; Donata Rimoldi; Olivier Michielin

Purpose: To investigate the mechanism(s) of resistance to the RAF-inhibitor vemurafenib, we conducted a comprehensive analysis of the genetic alterations occurring in metastatic lesions from a patient with a BRAFV600E-mutant cutaneous melanoma who, after a first response, underwent subsequent rechallenge with this drug. Experimental Design: We obtained blood and tissue samples from a patient diagnosed with a BRAFV600E-mutant cutaneous melanoma that was treated with vemurafenib and achieved a near-complete response. At progression, he received additional lines of chemo/immunotherapy and was successfully rechallenged with vemurafenib. Exome and RNA sequencing were conducted on a pretreatment tumor and two subcutaneous resistant metastases, one that was present at baseline and previously responded to vemurafenib (PV1) and one that occurred de novo after reintroduction of the drug (PV2). A culture established from PV1 was also analyzed. Results: We identified two NRAS-activating somatic mutations, Q61R and Q61K, affecting two main subpopulations in the metastasis PV1 and a BRAF alternative splicing, involving exons 4–10, in the metastasis PV2. These alterations, known to confer resistance to RAF inhibitors, were tumor-specific, mutually exclusive, and were not detected in pretreatment tumor samples. In addition, the oncogenic PIK3CAH1047R mutation was detected in a subpopulation of PV1, but this mutation did not seem to play a major role in vemurafenib resistance in this metastasis. Conclusions: This work describes the coexistence within the same patient of different molecular mechanisms of resistance to vemurafenib affecting different metastatic sites. These findings have direct implications for the clinical management of BRAF-mutant melanoma. Clin Cancer Res; 19(20); 5749–57. ©2013 AACR.


Microbiology | 2010

Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection

Peter Staib; Christophe Zaugg; Bernard Mignon; Johann Weber; Maria Grumbt; Sylvain Pradervand; Keith Harshman; Michel Monod

Although dermatophytes are the most common agents of superficial mycoses in humans and animals, the molecular basis of the pathogenicity of these fungi is largely unknown. In vitro digestion of keratin by dermatophytes is associated with the secretion of multiple proteases, which are assumed to be responsible for their particular specialization to colonize and degrade keratinized host structures during infection. To investigate the role of individual secreted proteases in dermatophytosis, a guinea pig infection model was established for the zoophilic dermatophyte Arthroderma benhamiae, which causes highly inflammatory cutaneous infections in humans and rodents. By use of a cDNA microarray covering approximately 20-25 % of the A. benhamiae genome and containing sequences of at least 23 protease genes, we revealed a distinct in vivo protease gene expression profile in the fungal cells, which was surprisingly different from the pattern elicited during in vitro growth on keratin. Instead of the major in vitro -expressed proteases, others were activated specifically during infection. These enzymes are therefore suggested to fulfil important functions that are not exclusively associated with the degradation of keratin. Most notably, the gene encoding the serine protease subtilisin 6, which is a known major allergen in the related dermatophyte Trichophyton rubrum and putatively linked to host inflammation, was found to be the most strongly upregulated gene during infection. In addition, our approach identified other candidate pathogenicity-related factors in A. benhamiae, such as genes encoding key enzymes of the glyoxylate cycle and an opsin-related protein. Our work provides what we believe to be the first broad-scale gene expression profile in human pathogenic dermatophytes during infection, and points to putative virulence-associated mechanisms that make these micro-organisms the most successful aetiological agents of superficial mycoses.


American Journal of Human Genetics | 2013

FAM111A mutations result in hypoparathyroidism and impaired skeletal development

Sheila Unger; Maria W. Górna; Antony Le Béchec; Sónia do Vale-Pereira; Maria Francesca Bedeschi; Stefan Geiberger; Giedre Grigelioniene; Eva Horemuzova; Faustina Lalatta; Ekkehart Lausch; Cinzia Magnani; Sheela Nampoothiri; Gen Nishimura; Duccio Petrella; Francisca Rojas-Ringeling; Akari Utsunomiya; Bernhard Zabel; Sylvain Pradervand; Keith Harshman; Belinda Campos-Xavier; Luisa Bonafé; Giulio Superti-Furga; Brian J. Stevenson; Andrea Superti-Furga

Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth.


Eukaryotic Cell | 2009

Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins.

Christophe Zaugg; Michel Monod; Johann Weber; Keith Harshman; Sylvain Pradervand; Jérôme Thomas; Manuel Bueno; Karin Giddey; Peter Staib

ABSTRACT Dermatophytes are highly specialized filamentous fungi which cause the majority of superficial mycoses in humans and animals. The high secreted proteolytic activity of these microorganisms during growth on proteins is assumed to be linked to their particular ability to exclusively infect keratinized host structures such as the skin stratum corneum, hair, and nails. Individual secreted dermatophyte proteases were recently described and linked with the in vitro digestion of keratin. However, the overall adaptation and transcriptional response of dermatophytes during protein degradation are largely unknown. To address this question, we constructed a cDNA microarray for the human pathogenic dermatophyte Trichophyton rubrum that was based on transcripts of the fungus grown on proteins. Profiles of gene expression during the growth of T. rubrum on soy and keratin protein displayed the activation of a large set of genes that encode secreted endo- and exoproteases. In addition, other specifically induced factors potentially implicated in protein utilization were identified, including heat shock proteins, transporters, metabolic enzymes, transcription factors, and hypothetical proteins with unknown functions. Of particular interest is the strong upregulation of key enzymes of the glyoxylate cycle in T. rubrum during growth on soy and keratin, namely, isocitrate lyase and malate synthase. This broad-scale transcriptional analysis of dermatophytes during growth on proteins reveals new putative pathogenicity-related host adaptation mechanisms of these human pathogenic fungi.


Nature Genetics | 2016

NANS-mediated synthesis of sialic acid is required for brain and skeletal development

Clara van Karnebeek; Luisa Bonafé; Xiao-Yan Wen; Maja Tarailo-Graovac; Sara Balzano; Beryl Royer-Bertrand; Angel Ashikov; Livia Garavelli; Isabella Mammi; Licia Turolla; Catherine Breen; Dian Donnai; Valérie Cormier-Daire; Delphine Héron; Gen Nishimura; Shinichi Uchikawa; Belinda Campos-Xavier; Antonio Rossi; Thierry Hennet; Koroboshka Brand-Arzamendi; Jacob Rozmus; Keith Harshman; Brian J. Stevenson; Enrico Girardi; Giulio Superti-Furga; Tammie Dewan; Alissa Collingridge; Jessie Halparin; Colin Ross; Margot I. Van Allen

We identified biallelic mutations in NANS, the gene encoding the synthase for N-acetylneuraminic acid (NeuNAc; sialic acid), in nine individuals with infantile-onset severe developmental delay and skeletal dysplasia. Patient body fluids showed an elevation in N-acetyl-D-mannosamine levels, and patient-derived fibroblasts had reduced NANS activity and were unable to incorporate sialic acid precursors into sialylated glycoproteins. Knockdown of nansa in zebrafish embryos resulted in abnormal skeletal development, and exogenously added sialic acid partially rescued the skeletal phenotype. Thus, NANS-mediated synthesis of sialic acid is required for early brain development and skeletal growth. Normal sialylation of plasma proteins was observed in spite of NANS deficiency. Exploration of endogenous synthesis, nutritional absorption, and rescue pathways for sialic acid in different tissues and developmental phases is warranted to design therapeutic strategies to counteract NANS deficiency and to shed light on sialic acid metabolism and its implications for human nutrition.

Collaboration


Dive into the Keith Harshman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Stevenson

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Rougemont

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gen Nishimura

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge