Keith J. Bein
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keith J. Bein.
Journal of Geophysical Research | 2008
Keith J. Bein; Yongjing Zhao; Murray V. Johnston; Anthony S. Wexler
[1] A suite of particulate, gaseous and meteorological measurements during the Pittsburgh Supersite experiment were used to characterize the impact of the 2002 Quebec wildfires on pollutant concentrations and physical and chemical processes dominant in the region. Temporal trends in the number distribution of wildfire particles (isolated using Rapid Single-ultrafine-particle Mass Spectrometry data) combined with CO, NOx and O3 mixing ratios identified two separate periods (Periods I and II) when the measurement site was directly impacted by plumes of relatively unprocessed wildfire emissions; i.e., increases in primary ultrafine wildfire particles, CO and NOx concomitant with a decrease in O3 from intraplume NOx titration. Carbonaceous particle number distributions predominantly associated with vehicular emissions, PM2.5 sulfate mass concentration and SO2 mixing ratio resolved individual components of local and regional sources. Single particle signatures indicated a period of intense atmospheric processing following Period II that caused rapid growth of the ultrafine mode due to simultaneous sulfate and secondary organic mass accumulation, resulting in significant changes to particle physical and chemical properties. Particle growth was concurrent with large increases in O3 and maxima in incoming solar radiation and ambient temperature and is posited to have occurred in situ as the air mass, containing a mixture of urban and wildfire emissions, was advected past the site. In total, the current work demonstrates significant added severity for pollution episodes in an area already burdened by large anthropogenic emission rates due to the impact of the 2002 Quebec wildfires. High levels of atmospheric processing increased sulfate accumulation and SOA formation and brought PM2.5 mass concentrations close to, and O3 mixing ratios in excess of, the National Ambient Air Quality Standards. Projections of increasing wildfire activity under a warming climate may increase the frequency and severity of such events.
Journal of Geophysical Research | 2005
Yongjing Zhao; Keith J. Bein; A. S. Wexler; C. Misra; Philip M. Fine; Constantinos Sioutas
A field evaluation of versatile aerosol concentration enrichment system (VACES) coupled to a rapid single- particle mass spectrometer (RSMS-3) was conducted as part of the U. S. Environmental Protection Agency Supersite program in Pittsburgh during March 2002. RSMS- 3 hit rate increases were measured, and possible particle composition changes introduced by the VACES were examined in the single- particle mass spectra. The hit rates increased by 5 - 20 times at particle sizes ranging from 40 to 640 nm. VACES only enhances the hit rate by about a factor of 2 for large particle sizes because the RSMS-3 flow rates for these particles did not match the optimum operating condition of VACES. During the 3 days of measurements most of the particles were a mixture of carbonaceous material and ammonium nitrate with a variation across the spectrum from particles that were mostly carbonaceous to particles that were mostly ammonium nitrate. Both ambient and concentrated carbonaceous and ammonium nitrate composition distributions were indistinguishable with RSMS-3, suggesting that VACES introduces an insignificant artifact for those particles.
Journal of Toxicology and Environmental Health | 2015
Christopher M. Carosino; Keith J. Bein; Laurel E. Plummer; Alejandro R. Castañeda; Yongjing Zhao; Anthony S. Wexler; Kent E. Pinkerton
Ambient particulate matter (PM) originates from a range of sources and differs in composition with respect to season, time of day, and particle size. In this study, ambient PM samples in the ultrafine and submicrometer fine range were tested for the potential to exacerbate a murine model of allergic airway inflammation when exposure occurs solely during allergic sensitization, but not during subsequent allergen challenge. Temporally resolved and size-segregated PM samples were used to understand how summer or winter, day or night, and ambient ultrafine and submicrometer fine particle size influence PM’s ability to exacerbate allergic inflammation. PM was collected in urban Fresno, CA. BALB/c mice were exposed to PM and house dust mite allergen (HDM) via intranasal aspiration on d 1, 3, and 5. HDM challenge occurred on d 12–14, with inflammation assessed 24 h following final challenge. While season or particle size did not predict allergic inflammation, daytime ultrafine and submicrometer fine particles significantly increased total cellular inflammation, specifically lymphocyte and eosinophil infiltration, compared to allergic controls. Further studies examined PM-mediated changes within the lung during the period where allergen sensitization occurred by measuring direct effects of PM on pulmonary oxidative stress and inflammation. Pulmonary levels of heme oxygenase-1 (HO-1), a biomarker of oxidative stress, but not cellular inflammation, demonstrated a remarkable correlation with the degree of allergic inflammation in animals sensitized to allergen and PM concomitantly, suggesting acute PM-mediated HO-1 levels may serve as a predictive indicator of a particle’s ability to exacerbate allergic airway inflammation.
Environmental Science & Technology | 2009
Keith J. Bein; Yaqian Zhao; Anthony S. Wexler
Current particulate matter regulations control the mass concentration of particles in the atmosphere regardless of composition, but some primary and/or secondary particulate matter components are no doubt more or less toxic than others. Testing direct emissions of pollutants from different sources neglects atmospheric transformations that may increase or decrease their toxicity. This work describes a system that conditionally samples particles from the atmosphere depending on the sources or source combinations that predominate at the sampling site at a given time. A single particle mass spectrometer (RSMS-II), operating in the 70-150 nm particle diameter range, continuously provides the chemical composition of individual particles. The mass spectra indicate which sources are currently affecting the site. Ten ChemVol samplers are each assigned one source or source combination, and the RSMS-II controls which one operates depending on the sources or source combinations observed. By running this system for weeks at a time, sufficient sample is collected by the ChemVols for comparative toxicological studies. This paper describes the instrument and algorithmic design, implementation, and first results from operating this system in Fresno, CA, during summer 2008 and winter 2009.
Toxicological Sciences | 2015
Laura S. Van Winkle; Keith J. Bein; Donald S. Anderson; Kent E. Pinkerton; Fern Tablin; Dennis W. Wilson; Anthony S. Wexler
Particulate matter (PM) exposure contributes to respiratory diseases and cardiopulmonary mortality. PM toxicity is related to sources and composition, such as abundance of polycyclic aromatic hydrocarbons (PAHs). We exposed adult male BALB/c mice, via oropharyngeal aspiration, to a range of doses of PM2.5 collected during the winter in downtown Sacramento near a major freeway interchange (SacPM). Two preparation methods (spin-down and multi-solvent extraction) were tested to remove particles from collection filters. Three doses were analyzed 24 h after treatment for (1) leukocytes and total protein in bronchoalveolar lavage fluid (BALF), (2) airway-specific and whole lobe expression of PAH-sensitive genes (CYP1B1 and CYP1A1) and IL-1 b, (3) lung histology, and (4) platelet function. Both extraction methods stimulated biological responses, but the spin-down method was more robust at producing IL-1 b and CYP1B1 gene responses and the multi-solvent extraction induced whole lung CYP1A1. Neutrophils in the BALF were increased 5- to 10-fold at the mid and high dose for both preparations. Histopathology scores indicated dose-dependent responses and increased pathology associated with spin-down-derived PM exposure. In microdissected airways, spin-down PM increased CYP1B1 gene expression significantly, but multi-solvent extracted PM did not. Platelet responses to the physiological agonist thrombin were approximately twice as potent in the spin-down preparation as in the multi-solvent extract. We conclude (1) the method of filter extraction can influence the degree of biological response, (2) for SacPM the minimal effective dose is 27.5-50 µg based on neutrophil recruitment, and (3) P450s are upregulated differently in airways and lung parenchyma in response to PAH-containing PM.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2013
Jackie K. W. Chan; Christoph F.A. Vogel; Jaeeun Baek; Sean D. Kodani; Ravi Uppal; Keith J. Bein; Donald S. Anderson; Laura S. Van Winkle
Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM.
Journal of Toxicology and Environmental Health | 2017
Alejandro R. Castañeda; Keith J. Bein; Suzette Smiley-Jewell; Kent E. Pinkerton
ABSTRACT Ambient particulate matter (PM), a component of air pollution, exacerbates airway inflammation and hyperreactivity in asthmatic patients. Studies showed that PM possesses adjuvant-like properties that enhance the allergic inflammatory response; however, the mechanism (or mechanisms) by which PM enhances the allergic response remains to be determined. The aim of this study was to assess how exposure to fine PM collected from Sacramento, CA, shapes the allergic airway immune response in BALB/c mice undergoing sensitization and challenge with ovalbumin (OVA). Eight-week-old BALB/c male mice were sensitized/challenged with phosphate-buffered saline (PBS/PBS; n = 6), PM/PBS (n = 6), OVA/OVA (n = 6), or OVA + PM/OVA (n = 6). Lung tissue, bronchoalveolar lavage fluid (BALF), and plasma were analyzed for cellular inflammation, cytokines, immunoglobulin E, and heme oxygenase-1 (HO-1) expression. Mice in the OVA + PM/OVA group displayed significantly increased airway inflammation compared to OVA/OVA animals. Total cells, macrophages, and eosinophils recovered in BALF were significantly elevated in the OVA + PM/OVA compared to OVA/OVA group. Histopathological grading indicated that OVA + PM/OVA treatment induced significant inflammation compared to OVA/OVA. Both immunoglobulin (Ig) E and tumor necrosis factor (TNF) α levels were significantly increased in OVA/OVA and OVA + PM /OVA groups compared to PBS/PBS control. The number of HO-1 positive alveolar macrophages was significantly elevated in lungs of mice treated with OVA + PM /OVA compared to OVA/OVA. Our findings suggest that fine PM enhances allergic inflammatory response in pulmonary tissue through mechanisms involving increased oxidative stress.
Journal of Chemical Physics | 2007
Keith J. Bein; Anthony S. Wexler
Sulfuric acid–water nucleation is thought to be a key atmospheric mechanism for forming new condensation nuclei. In earlier literature, measurements of sulfuric acid activity were interpreted as the total (monomer plus hydrate) concentration above solution. Due to recent reinterpretations, most literature values for H2SO4 activity are thought to represent the number density of monomers. Based on this reinterpretation, the current work uses the most recent models of H2O–H2SO4 binary nucleation along with perturbation analyses to predict a decrease in critical cluster mole fraction, increase in critical cluster diameter, and orders of magnitude decrease in nucleation rate. Nucleation rate parameterizations available in the literature, however, give opposite trends. To resolve these discrepancies, nucleation rates were calculated for both interpretations of H2SO4 activity and directly compared to the available parameterizations as well as the perturbation analysis. Results were in excellent agreement with ol...
IEEE Transactions on Visualization and Computer Graphics | 2012
Daniel Engel; Klaus Greff; Christoph Garth; Keith J. Bein; Anthony S. Wexler; Bernd Hamann; Hans Hagen
The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elusive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes, we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass spectrometry data at significantly increased speed and a higher degree of ease.
Toxicology Letters | 2018
Alejandro R. Castañeda; Kent E. Pinkerton; Keith J. Bein; Alfonso Magaña-Méndez; Houa T. Yang; Paul Ashwood; Christoph F.A. Vogel
The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR-/-) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR-/- BMDCs with autologous naive T cells. PM2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM2.5 induced interleukin (IL)-1β, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner.