Keith L. McDougall
La Trobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keith L. McDougall.
Frontiers in Ecology and the Environment | 2009
Aníbal Pauchard; Christoph Kueffer; Hansjörg Dietz; Curtis C. Daehler; Jake Alexander; Peter J. Edwards; José Ramón Arévalo; Lohengrin A. Cavieres; Antoine Guisan; Sylvia Haider; Gabi Jakobs; Keith L. McDougall; Constance I. Millar; Bridgett J. Naylor; Catherine G. Parks; Lisa J. Rew; Tim Seipel
Most studies of invasive species have been in highly modified, lowland environments, with comparatively little attention directed to less disturbed, high-elevation environments. However, increasing evidence indicates that plant invasions do occur in these environments, which often have high conservation value and provide important ecosystem services. Over a thousand non-native species have become established in natural areas at high elevations worldwide, and although many of these are not invasive, some may pose a considerable threat to native mountain ecosystems. Here, we discuss four main drivers that shape plant invasions into high-elevation habitats: (1) the (pre-)adaptation of non-native species to abiotic conditions, (2) natural and anthropogenic disturbances, (3) biotic resistance of the established communities, and (4) propagule pressure. We propose a comprehensive research agenda for tackling the problem of plant invasions into mountain ecosystems, including documentation of mountain invasion patterns at multiple scales, experimental studies, and an assessment of the impacts of non-native species in these systems. The threat posed to high-elevation biodiversity by invasive plant species is likely to increase because of globalization and climate change. However, the higher mountains harbor ecosystems where invasion by non-native species has scarcely begun, and where science and management have the opportunity to respond in time.
Australian Journal of Botany | 2008
David M. Cahill; James Rookes; Barbara A. Wilson; Lesley Gibson; Keith L. McDougall
Phytophthora cinnamomi continues to cause devastating disease in Australian native vegetation and consequently the disease is listed by the Federal Government as a process that is threatening Australia’s biodiversity. Although several advances have been made in our understanding of how this soil-borne pathogen interacts with plants and of how we may tackle it in natural systems, our ability to control the disease is limited. The pathogen occurs widely across Australia but the severity of its impact is most evident within ecological communities of the south-west and south-east of the country. A regional impact summary for all states and territories shows the pathogen to be the cause of serious disease in numerous species, a significant number of which are rare and threatened. Many genera of endemic taxa have a high proportion of susceptible species including the iconic genera Banksia, Epacris and Xanthorrhoea. Long-term studies in Victoria have shown limited but probably unsustainable recovery of susceptible vegetation, given current management practices. Management of the disease in conservation reserves is reliant on hygiene, the use of chemicals and restriction of access, and has had only limited effectiveness and not provided complete control. The deleterious impacts of the disease on faunal habitat are reasonably well documented and demonstrate loss of individual animal species and changes in population structure and species abundance. Few plant species are known to be resistant to P. cinnamomi; however, investigations over several years have discovered the mechanisms by which some plants are able to survive infection, including the activation of defence-related genes and signalling pathways, the reinforcement of cell walls and accumulation of toxic metabolites. Manipulation of resistance and resistance-related mechanisms may provide avenues for protection against disease in otherwise susceptible species. Despite the advances made in Phytophthora research in Australia during the past 40 years, there is still much to be done to give land managers the resources to combat this disease. Recent State and Federal initiatives offer the prospect of a growing and broader awareness of the disease and its associated impacts. However, awareness must be translated into action as time is running out for the large number of susceptible, and potentially susceptible, species within vulnerable Australian ecological communities.
Mountain Research and Development | 2011
Keith L. McDougall; Anzar A. Khuroo; Lloyd L. Loope; Catherine G. Parks; Aníbal Pauchard; Zafar A. Reshi; Ian Rushworth; Christoph Kueffer
Abstract Mountains are one of few ecosystems little affected by plant invasions. However, the threat of invasion is likely to increase because of climate change, greater anthropogenic land use, and continuing novel introductions. Preventive management, therefore, will be crucial but can be difficult to promote when more pressing problems are unresolved and predictions are uncertain. In this essay, we use management case studies from 7 mountain regions to identify common lessons for effective preventive action. The degree of plant invasion in mountains was variable in the 7 regions as was the response to invasion, which ranged from lack of awareness by land managers of the potential impact in Chile and Kashmir to well-organized programs of prevention and containment in the United States (Hawaii and the Pacific Northwest), including prevention at low altitude. In Australia, awareness of the threat grew only after disruptive invasions. In South Africa, the economic benefits of removing alien plants are well recognized and funded in the form of employment programs. In the European Alps, there is little need for active management because no invasive species pose an immediate threat. From these case studies, we identify lessons for management of plant invasions in mountain ecosystems: (i) prevention is especially important in mountains because of their rugged terrain, where invasions can quickly become unmanageable; (ii) networks at local to global levels can assist with awareness raising and better prioritization of management actions; (iii) the economic importance of management should be identified and articulated; (iv) public acceptance of management programs will make them more effective; and (v) climate change needs to be considered. We suggest that comparisons of local case studies, such as those we have presented, have a pivotal place in the proactive solution of global change issues.
Australian Journal of Botany | 2002
Keith L. McDougall; Richard J. Hobbs; G.E.St.J. Hardy
The vegetation of seven sites in the northern jarrah forest of Western Australia infested with Phytophthora cinnamomi was recorded and compared with adjoining vegetation. The number of species per quadrat was found to be the same in vegetation affected by P. cinnamomi as in healthy vegetation, although there were more species overall in affected vegetation. Vegetation of uninfested sites had a higher cover and more species per quadrat of trees and shrubs and lower cover and fewer species per quadrat of annual plants than vegetation of infested sites. Although many species that are known to be highly susceptible to infection by P. cinnamomi were rare at infested sites, only two (Banksia grandis and Tetratheca hirsuta) were absent from all of the 50-year-old infested parts of sites. Several species that are known to be highly susceptible to infection by P. cinnamomi were as common at infested as at healthy sites. The presence of such species at infested sites and the capacity of P. cinnamomi to infect species it does not kill suggest that this pathogen will persist and continue to influence future vegetation in the jarrah forest.
Biological Invasions | 2016
Aníbal Pauchard; Ann Milbau; Ann Albihn; Jake M. Alexander; T. Burgess; Curtis C. Daehler; Göran Englund; Franz Essl; Birgitta Evengård; Gregory Greenwood; Sylvia Haider; Jonathan Lenoir; Keith L. McDougall; Erin Muths; Martin A. Nuñez; Johan Olofsson; Loïc Pellissier; Wolfgang Rabitsch; Lisa J. Rew; Mark P. Robertson; Nathan J. Sanders; Christoph Kueffer
Abstract Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.
Archive | 2013
Christoph Kueffer; Keith L. McDougall; Jake M. Alexander; Curt Daehler; Peter J. Edwards; Sylvia Haider; Ann Milbau; Catherine G. Parks; Aníbal Pauchard; Zafar A. Reshi; Lisa J. Rew; Mellesa Schroder; Tim Seipel
Mountains are of great significance for people and biodiversity. Although often considered to be at low risk from alien plants, recent studies suggest that mountain ecosystems are not inherently more resistant to invasion than other types of ecosystems. Future invasion risks are likely to increase greatly, in particular due to climate warming and increased human land use (e.g. intensification of human activities, human population growth, and expansion of tourism). However, these risks can be reduced by minimising anthropogenic disturbance in and around protected areas, and by preventing the introduction of potentially invasive alien plants into these areas, particularly at high elevations. Sharing information and experiences gained in different mountainous areas is important for devising effective management strategies. We review current knowledge about plant invasions into mountains, assembling evidence from all continents and across different climate zones, and describe experiences at local to global scales in preventing and managing plant invasions into mountain protected areas. Our findings and recommendations are also relevant for managing native species that expand to higher elevations.
Ecological Applications | 2016
Blaise Petitpierre; Keith L. McDougall; Tim Seipel; Olivier Broennimann; Antoine Guisan; Christoph Kueffer
Mountain ecosystems have been less adversely affected by invasions of non-native plants than most other ecosystems, partially because most invasive plants in the lowlands are limited by climate and cannot grow under harsher high-elevation conditions. However, with ongoing climate change, invasive species may rapidly move upwards and threaten mid-, and then high-elevation mountain ecosystems. We evaluated this threat by modeling the current and future habitat suitability for 48 invasive plant species in Switzerland and New South Wales, Australia. Both regions had contrasting climate interactions with elevation, resulting in possible different responses of species distributions to climate change. Using a species distribution modeling approach that combines data from two spatial scales, we built high-resolution species distribution models (≤ 250 m) that account for the global climatic niche of species and also finer variables depicting local climate and disturbances. We found that different environmental drivers limit the elevation range of invasive species in each of the two regions, leading to region-specific species responses to climate change. The optimal suitability for plant invaders is predicted to markedly shift from the lowland to the montane or subalpine zone in Switzerland, whereas the upward shift is far less pronounced in New South Wales where montane and subalpine elevations are already suitable. The results suggest that species most likely to invade high elevations in Switzerland will be cold-tolerant, whereas species with an affinity to moist soils are most likely to invade higher elevations in Australia. Other plant traits were only marginally associated with elevation limits. These results demonstrate that a more systematic consideration of future distributions of invasive species is required in conservation plans of not yet invaded mountainous ecosystems.
Alpine Botany | 2016
Jake M. Alexander; Jonas J. Lembrechts; Lohengrin A. Cavieres; Curtis C. Daehler; Sylvia Haider; Christoph Kueffer; Gang Liu; Keith L. McDougall; Ann Milbau; Aníbal Pauchard; Lisa J. Rew; Tim Seipel
Recent years have seen a surge of interest in understanding patterns and processes of plant invasions into mountains. Here, we synthesise current knowledge about the spread of non-native plants along elevation gradients, emphasising the current status and impacts that these species have in alpine ecosystems. Globally, invasions along elevation gradients are influenced by propagule availability, environmental constraints on population growth, evolutionary change and biotic interactions. The highest elevations are so far relatively free from non-native plants. Nonetheless, in total nearly 200 non-native plant species have been recorded from alpine environments around the world. However, we identified only three species as specifically cold-adapted, with the overwhelming majority having their centres of distribution under warmer environments, and few have substantial impacts on native communities. A combination of low propagule availability and low invasibility likely explain why alpine environments host few non-native plants relative to lowland ecosystems. However, experiences in some areas demonstrate that alpine ecosystems are not inherently resistant to invasions. Furthermore, they will face increasing pressure from the introduction of pre-adapted species, climate change, and the range expansion of native species, which are already causing concern in some areas. Nonetheless, because they are still relatively free from non-native plants, preventative action could be an effective way to limit future impacts of invasions in alpine environments.
Australian Journal of Botany | 2002
Keith L. McDougall; G.E.St.J. Hardy; Richard J. Hobbs
The spatial distribution of Phytophthora cinnamomi Rands at seven dieback sites in the jarrah (Eucalyptus marginata Donn. ex Smith) forest of Western Australia was determined by the following two baiting techniques: in situ baiting with live Banksia grandis Willd. seedlings and ex situ baiting of sampled soil and root material. Four areas within each site were sampled, reflecting dieback age and position in the landscape. Approximate dieback ages of 50, 20 and 5 years were determined by aerial photography. The 50-year-old age class was divided into wet valley floor and dry gravelly slope. Phytophthora cinnamomi was recovered most frequently from the 5-year-old (dieback fronts) and wet 50-year-old areas by both baiting techniques. It was recovered from more than twice as many areas and about five times as many samples when in situ B. grandis baits were used compared with ex situ soil and root baiting. Almost all recoveries from in situ baits were made between October and December. From both methods, it appears that P. cinnamomi has a patchy distribution within dieback sites in the northern jarrah forest. It is easily detected only on dieback fronts and wet valley floors. On dry gravelly sites affected 20 years or more ago, P. cinnamomi is rare and may even be absent at some sites. This makes confident detection of the pathogen difficult. In situ baiting at least allows a temporal component to the sampling and will be a useful method of detection in areas where P. cinnamomi is rare or transient.
Australian Journal of Botany | 2003
Keith L. McDougall
The vegetation of two areas on the Bogong High Plains in 1936 was compared with that in 1980 by using a point sampling technique on aerial photographs. Between 1936 and 1980, the cover of closed heathland, wetland and trees (Eucalyptus pauciflora) increased but the cover of grassland decreased. No change was detected overall in the cover of open heathland. The increase in closed heathland was not due to direct conversion of grassland areas. Most change was from grassland to open heathland and from open heathland to closed heathland vegetation. The increase in wetland vegetation may have been a response to the reduction in grazing pressure since the 1930s. The greater cover of trees in 1980 was due to expansion of existing patches rather than the establishment of new patches. This may have been attributable in part to regeneration following bushfires in 1926 and 1939. The possible role of higher mean temperatures associated with global warming in the increased tree and shrub cover is worthy of further investigation.