Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith Menear is active.

Publication


Featured researches published by Keith Menear.


Cancer Research | 2010

AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with In vitro and In vivo Antitumor Activity

Christine M. Chresta; Barry R. Davies; Ian Hickson; Tom Harding; Sabina Cosulich; Susan E. Critchlow; John Vincent; Rebecca Ellston; Darren Jones; Patrizia Sini; Dominic James; Zoe Howard; Phillippa Dudley; Gareth Hughes; Lisa L. Smith; Sharon Maguire; Marc Geoffery Hummersone; Karine Malagu; Keith Menear; Richard Jenkins; Matt Jacobsen; Graeme Cameron Murray Smith; Sylvie Guichard; Martin Pass

The mammalian target of rapamycin (mTOR) kinase forms two multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, cell survival, and autophagy. Allosteric inhibitors of mTORC1, such as rapamycin, have been extensively used to study tumor cell growth, proliferation, and autophagy but have shown only limited clinical utility. Here, we describe AZD8055, a novel ATP-competitive inhibitor of mTOR kinase activity, with an IC50 of 0.8 nmol/L. AZD8055 showed excellent selectivity (approximately 1,000-fold) against all class I phosphatidylinositol 3-kinase (PI3K) isoforms and other members of the PI3K-like kinase family. Furthermore, there was no significant activity against a panel of 260 kinases at concentrations up to 10 micromol/L. AZD8055 inhibits the phosphorylation of mTORC1 substrates p70S6K and 4E-BP1 as well as phosphorylation of the mTORC2 substrate AKT and downstream proteins. The rapamycin-resistant T37/46 phosphorylation sites on 4E-BP1 were fully inhibited by AZD8055, resulting in significant inhibition of cap-dependent translation. In vitro, AZD8055 potently inhibits proliferation and induces autophagy in H838 and A549 cells. In vivo, AZD8055 induces a dose-dependent pharmacodynamic effect on phosphorylated S6 and phosphorylated AKT at plasma concentrations leading to tumor growth inhibition. Notably, AZD8055 results in significant growth inhibition and/or regression in xenografts, representing a broad range of human tumor types. AZD8055 is currently in phase I clinical trials.


Journal of Medicinal Chemistry | 2008

4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1.

Keith Menear; Claire Adcock; Robert Boulter; Xiao-Ling Fan Cockcroft; Louise Copsey; Aaron Cranston; Krystyna J. Dillon; Jan Drzewiecki; Sheila Garman; Sylvie Kudos Pharm. Limited Gomez; Hashim Javaid; Frank Kerrigan; Charlotte Knights; Alan Lau; Vincent M. Loh; Ian Timothy William Matthews; Stephen Moore; Mark J. O'Connor; Graeme Cameron Murray Smith; Niall Morrison Barr Martin

Poly(ADP-ribose) polymerase activation is an immediate cellular response to metabolic-, chemical-, or ionizing radiation-induced DNA damage and represents a new target for cancer therapy. In this article, we disclose a novel series of substituted 4-benzyl-2 H-phthalazin-1-ones that possess high inhibitory enzyme and cellular potency for both PARP-1 and PARP-2. Optimized compounds from the series also demonstrate good pharmacokinetic profiles, oral bioavailability, and activity in vivo in an SW620 colorectal cancer xenograft model. 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2 H-phthalazin-1-one (KU-0059436, AZD2281) 47 is a single digit nanomolar inhibitor of both PARP-1 and PARP-2 that shows standalone activity against BRCA1-deficient breast cancer cell lines. Compound 47 is currently undergoing clinical development for the treatment of BRCA1- and BRCA2-defective cancers.


Molecular Cancer Therapeutics | 2009

Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion

Sarah E. Golding; Elizabeth Rosenberg; Nicholas C.K. Valerie; Isa Hussaini; Mark Frigerio; Xiao-Ling Fan Cockcroft; Wei Yee Chong; Marc Geoffery Hummersone; Laurent Jean Martin Rigoreau; Keith Menear; Mark J. O'Connor; Lawrence F. Povirk; Timothy Van Meter

Ataxia telangiectasia (A-T) mutated (ATM) is critical for cell cycle checkpoints and DNA repair. Thus, specific small molecule inhibitors targeting ATM could perhaps be developed into efficient radiosensitizers. Recently, a specific inhibitor of the ATM kinase, KU-55933, was shown to radiosensitize human cancer cells. Herein, we report on an improved analogue of KU-55933 (KU-60019) with Ki and IC50 values half of those of KU-55933. KU-60019 is 10-fold more effective than KU-55933 at blocking radiation-induced phosphorylation of key ATM targets in human glioma cells. As expected, KU-60019 is a highly effective radiosensitizer of human glioma cells. A-T fibroblasts were not radiosensitized by KU-60019, strongly suggesting that the ATM kinase is specifically targeted. Furthermore, KU-60019 reduced basal S473 AKT phosphorylation, suggesting that the ATM kinase might regulate a protein phosphatase acting on AKT. In line with this finding, the effect of KU-60019 on AKT phosphorylation was countered by low levels of okadaic acid, a phosphatase inhibitor, and A-T cells were impaired in S473 AKT phosphorylation in response to radiation and insulin and unresponsive to KU-60019. We also show that KU-60019 inhibits glioma cell migration and invasion in vitro, suggesting that glioma growth and motility might be controlled by ATM via AKT. Inhibitors of MEK and AKT did not further radiosensitize cells treated with KU-60019, supporting the idea that KU-60019 interferes with prosurvival signaling separate from its radiosensitizing properties. Altogether, KU-60019 inhibits the DNA damage response, reduces AKT phosphorylation and prosurvival signaling, inhibits migration and invasion, and effectively radiosensitizes human glioma cells. [Mol Cancer Ther 2009;8(10):2894–902]


Bioorganic & Medicinal Chemistry Letters | 2013

Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: The discovery of AZD8055 and AZD2014

Kurt Gordon Pike; Karine Malagu; Marc Geoffery Hummersone; Keith Menear; Heather Mary Ellen Duggan; Sylvie Gomez; Niall Morrison Barr Martin; Linette Ruston; Sarah L. Pass; Martin Pass

The optimization of a potent and highly selective series of dual mTORC1 and mTORC2 inhibitors is described. An initial focus on improving cellular potency whilst maintaining or improving other key parameters, such as aqueous solubility and margins over hERG IC(50), led to the discovery of the clinical candidate AZD8055 (14). Further optimization, particularly aimed at reducing the rate of metabolism in human hepatocyte incubations, resulted in the discovery of the clinical candidate AZD2014 (21).


Molecular Cancer Therapeutics | 2012

Chemosensitization of Cancer Cells by KU-0060648, A Dual Inhibitor of DNA-PK and PI-3K

Joanne M. Munck; Michael A. Batey; Yan Zhao; Helen Jenkins; Caroline Richardson; Celine Cano; Michele Tavecchio; Jody Barbeau; Julia Bardos; Liam Cornell; Roger J. Griffin; Keith Menear; Andrew Slade; Pia Thommes; Niall Mb Martin; David R. Newell; Graeme Cameron Murray Smith; Nicola J. Curtin

DNA double-strand breaks (DSB) are the most cytotoxic lesions induced by topoisomerase II poisons. Nonhomologous end joining (NHEJ) is a major pathway for DSB repair and requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK catalytic subunit (DNA-PKcs) is structurally similar to PI-3K, which promotes cell survival and proliferation and is upregulated in many cancers. KU-0060648 is a dual inhibitor of DNA-PK and PI-3K in vitro. KU-0060648 was investigated in a panel of human breast and colon cancer cells. The compound inhibited cellular DNA-PK autophosphorylation with IC50 values of 0.019 μmol/L (MCF7 cells) and 0.17 μmol/L (SW620 cells), and PI-3K–mediated AKT phosphorylation with IC50 values of 0.039 μmol/L (MCF7 cells) and more than 10 μmol/L (SW620 cells). Five-day exposure to 1 μmol/L KU-0060648 inhibited cell proliferation by more than 95% in MCF7 cells but only by 55% in SW620 cells. In clonogenic survival assays, KU-0060648 increased the cytotoxicity of etoposide and doxorubicin across the panel of DNA-PKcs–proficient cells, but not in DNA-PKcs–deficient cells, thus confirming that enhanced cytotoxicity was due to DNA-PK inhibition. In mice bearing SW620 and MCF7 xenografts, concentrations of KU-0060648 that were sufficient for in vitro growth inhibition and chemosensitization were maintained within the tumor for at least 4 hours at nontoxic doses. KU-0060648 alone delayed the growth of MCF7 xenografts and increased etoposide-induced tumor growth delay in both in SW620 and MCF7 xenografts by up to 4.5-fold, without exacerbating etoposide toxicity to unacceptable levels. The proof-of-principle in vitro and in vivo chemosensitization with KU-0060648 justifies further evaluation of dual DNA-PK and PI-3K inhibitors. Mol Cancer Ther; 11(8); 1789–98. ©2012 AACR.


Bioorganic & Medicinal Chemistry Letters | 2009

The discovery and optimisation of pyrido[2,3-d]pyrimidine-2,4-diamines as potent and selective inhibitors of mTOR kinase.

Karine Malagu; Heather Mary Ellen Duggan; Keith Menear; Marc Geoffery Hummersone; Sylvie Gomez; Christine Bailey; Peter D. Edwards; Jan Drzewiecki; Frederic Leroux; Mar Jimenez Quesada; Gesine Johanna Hermann; Stephanie Maine; Carrie-Anne Molyneaux; Armelle Le Gall; James R. Pullen; Ian D. Hickson; Lisa L. Smith; Sharon Maguire; Niall Morrison Barr Martin; Graeme Smith; Martin Pass

We describe a novel series of potent inhibitors of the kinase activity of mTOR. The compounds display good selectivity relative to other PI3K-related kinase family members and, in cellular assays, inhibit both mTORC1 and mTORC2 complexes and exhibit good antiproliferative activity.


Bioorganic & Medicinal Chemistry Letters | 2009

Identification and optimisation of novel and selective small molecular weight kinase inhibitors of mTOR

Keith Menear; Sylvie Gomez; Karine Malagu; Christine Bailey; Kristel Blackburn; Xiao-Ling Fan Cockcroft; Sally Ewen; Alexandra Fundo; Armelle Le Gall; Gesine Johanna Hermann; Luisa Sebastian; Mihiro Sunose; Thomas Presnot; Eleanor Torode; Ian Hickson; Niall Morrison Barr Martin; Graeme Cameron Murray Smith; Kurt Gordon Pike

A pharmacophore mapping approach, derived from previous experience of PIKK family enzymes, was used to identify a hit series of selective inhibitors of the mammalian target of rapamycin (mTOR). Subsequent refinement of the SAR around this hit series based on a tri-substituted triazine scaffold has led to the discovery of potent and selective inhibitors of mTOR.


Journal of Medicinal Chemistry | 2010

DNA-Dependent Protein Kinase (DNA-PK) Inhibitors. Synthesis and Biological Activity of Quinolin-4-one and Pyridopyrimidin-4-one Surrogates for the Chromen-4-one Chemotype

Celine Cano; Olivier R. Barbeau; Christine Bailey; Xiao-Ling Fan Cockcroft; Nicola J. Curtin; Heather Mary Ellen Duggan; Mark Frigerio; Bernard T. Golding; Ian R. Hardcastle; Marc Geoffery Hummersone; Charlotte Knights; Keith Menear; David R. Newell; Caroline Richardson; Graeme Cameron Murray Smith; Ben Spittle; Roger J. Griffin

Following the discovery of dibenzo[b,d]thiophen-4-yl)-2-morpholino-4H-chromen-4-one (NU7441) ( Leahy , J. J. J. ; Golding , B. T. ; Griffin , R. J. ; Hardcastle , I. R. ; Richardson , C. ; Rigoreau , L. ; Smith , G. C. M. Bioorg. Med. Chem. Lett. 2004 , 14 , 6083 - 6087) as a potent inhibitor (IC₅₀ = 30 nM) of DNA-dependent protein kinase (DNA-PK), we have investigated analogues in which the chromen-4-one core template has been replaced by aza-heterocyclic systems: 9-substituted 2-morpholin-4-ylpyrido[1,2-a]pyrimidin-4-ones and 8-substituted 2-morpholin-4-yl-1H-quinolin-4-ones. The 8- and 9-substituents were either dibenzothiophen-4-yl or dibenzofuran-4-yl, which were each further substituted at the 1-position with water-solubilizing groups [NHCO(CH₂)(n)NR¹R², where n = 1 or 2 and the moiety R¹R²N was derived from a library of primary and secondary amines (e.g., morpholine)]. The inhibitors were synthesized by employing a multiple-parallel approach in which the two heterocyclic components were assembled by Suzuki-Miyaura cross-coupling. Potent DNA-PK inhibitory activity was generally observed across the compound series, with structure-activity studies indicating that optimal potency resided in pyridopyrimidin-4-ones bearing a substituted dibenzothiophen-4-yl group. Several of the newly synthesized compounds (e.g., 2-morpholin-4-yl-N-[4-(2-morpholin-4-yl-4-oxo-4H-pyrido[1,2-a]pyrimidin-9-yl)dibenzothiophen-1-yl]acetamide) combined high potency against the target enzyme (DNA-PK IC₅₀ = 8 nM) with promising activity as potentiators of ionizing radiation-induced cytotoxicity in vitro.


Bioorganic & Medicinal Chemistry Letters | 2008

Novel alkoxybenzamide inhibitors of poly(ADP-ribose) polymerase.

Keith Menear; Claire Adcock; Francisco Cuenca Alonso; Kristel Blackburn; Louise Copsey; Jan Drzewiecki; Alexandra Fundo; Armelle Le Gall; Sylvie Gomez; Hashim Javaid; Carlos Fenandez Lence; Niall Morrison Barr Martin; Chris Mydlowski; Graeme Cameron Murray Smith

We have previously described poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors based on a substituted benzyl-phthalazinone scaffold. As an alternative chemical template, a novel series of alkoxybenzamides were developed with restricted conformation through intramolecular hydrogen bond formation; the compounds exhibit low nM enzyme and cellular activity as PARP-1 inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2011

DNA-dependent protein kinase (DNA-PK) inhibitors: Structure–activity relationships for O-alkoxyphenylchromen-4-one probes of the ATP-binding domain

Kate M. Clapham; Julia Bardos; M. Raymond V. Finlay; Bernard T. Golding; Edward Jolyon Griffen; Roger J. Griffin; Ian R. Hardcastle; Keith Menear; Attilla Ting; Paul Turner; Gail L. Young; Celine Cano

Introduction of an O-alkoxyphenyl substituent at the 8-position of the 2-morpholino-4H-chromen-4-one pharmacophore enabled regions of the ATP-binding site of DNA-dependent protein kinase (DNA-PK) to be probed further. Structure-activity relationships have been elucidated for inhibition of DNA-PK and PI3K (p110α), with N-(2-(cyclopropylmethoxy)-4-(2-morpholino-4-oxo-4H-chromen-8-yl)phenyl)-2-morpholinoacetamide 11a being identified as a potent and selective DNA-PK inhibitor (IC(50)=8 nM).

Collaboration


Dive into the Keith Menear's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Frigerio

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge