Keith T. Jones
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keith T. Jones.
Journal of Andrology | 2012
Aitken Rj; Keith T. Jones; Sarah A. Robertson
The ability of spermatozoa to generate reactive oxygen species (ROS) has been appreciated since the 1940s. It is a universal property of mature spermatozoa from all mammalian species and a major contributor to the oxidative stress responsible for defective sperm function. The mechanisms by which oxidative stress limits the functional competence of mammalian spermatozoa involve the peroxidation of lipids, the induction of oxidative DNA damage, and the formation of protein adducts. ROS production in these cells involves electron leakage from the sperm mitochondria, triggered by a multitude of factors that impede electron flow along the electron transport chain. The net result of mitochondrial ROS generation is to damage these organelles and initiate an intrinsic apoptotic cascade, as a consequence of which spermatozoa lose their motility, DNA integrity, and vitality. This pathway of programmed senescence also results in the exteriorization of phosphatidylserine, which may facilitate the silent phagocytosis of these cells in the aftermath of insemination, in turn influencing the female tract immune response to sperm antigens and future fertility. Despite the vulnerability of sperm to oxidative stress, it is also clear that normal sperm function depends on low levels of ROS generation in order to promote the signal transduction pathways associated with capacitation. Modulators of ROS generation by spermatozoa may therefore have clinical utility in regulating the fertilizing capacity of these cells and preventing the development of antisperm immunity. Achievement of these objectives will require a systematic evaluation of pro- and antioxidant strategies in vivo and in vitro.
Journal of Cell Biology | 2006
Suzanne Madgwick; David V. Hansen; Mark Levasseur; Peter K. Jackson; Keith T. Jones
During interkinesis, a metaphase II (MetII) spindle is built immediately after the completion of meiosis I. Oocytes then remain MetII arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of MetII arrest. In MetII oocytes, Emi2 needs to be degraded for oocytes to exit meiosis, and such degradation, as visualized by fluorescent protein tagging, occurred tens of minutes ahead of cyclin B1. Emi2 antisense morpholino knockdown during oocyte maturation did not affect polar body (PB) extrusion. However, in interkinesis the central spindle microtubules from meiosis I persisted for a short time, and a MetII spindle failed to assemble. The chromatin in the oocyte quickly decondensed and a nucleus formed. All of these effects were caused by the essential role of Emi2 in stabilizing cyclin B1 after the first PB extrusion because in Emi2 knockdown oocytes a MetII spindle was recovered by Emi2 rescue or by expression of nondegradable cyclin B1 after meiosis I.
Current Biology | 2002
Victoria L. Nixon; Mark Levasseur; Alex McDougall; Keith T. Jones
Cyclin B1, the regulatory component of M phase-promoting factor (MPF), is degraded during the metaphase-anaphase transition in an anaphase-promoting complex/cyclosome (APC/C)-dependent process. MPF activity is stable in eggs, and a sperm-triggered Ca(2+) signal is needed to promote cyclin degradation. In frogs, a single Ca(2+) spike promotes cell cycle resumption, but, in mammals, the Ca(2+) signal is more complex, consisting of a series of spikes that stop several hours after sperm fusion. Using dual imaging in mouse eggs, we have examined how the Ca(2+) signal generates cyclin B1 destruction using destructible and nondestructible GFP-tagged constructs. APC/C activity was present in unfertilized eggs, giving cyclin B1 a half-life of 1.15 +/- 0.28 hr. However, APC/C-dependent cyclin degradation was elevated 6-fold when sperm raised cytosolic Ca(2+) levels above 600 nM. This activation was transitory since cyclin B1 levels recovered between Ca(2+) spikes. For continued cyclin degradation at basal Ca(2+) levels, multiple spikes were needed. APC/C-mediated degradation was observed until eggs had completed meiosis with the formation of pronuclei, and, at this time, Ca(2+) spikes stopped. Therefore, the physiological need for a repetitive Ca(2+) signal in mammals is to ensure long-term cyclin destruction during a protracted exit from meiosis.
FEBS Letters | 1998
Keith T. Jones; Caroline Cruttwell; John Parrington; Karl Swann
Injection of sperm extracts triggers Ca2+ oscillations in mammalian eggs similar to those seen at fertilisation. Here, we show that addition of sperm extracts to sea urchin egg homogenates causes Ca2+ release and inositol 1,4,5‐trisphosphate (InsP3) production. Furthermore depleting homogenates of phosphatidylinositol lipids using a phosphatidylinositol‐specific phospholipase C blocked the sperm extract from causing InsP3 production and a Ca2+ rise. A response could be recovered by the addition of phosphatidylinositol 4,5‐bisphosphate to either sperm extracts or egg homogenates. These data indicate that sperm extracts contain an InsP3‐generating phospholipase C which may play a role in Ca2+ release at fertilisation.
Nature Cell Biology | 2006
A. Reis; Heng Yu Chang; Mark Levasseur; Keith T. Jones
Fully grown mammalian oocytes maintain a prophase I germinal-vesicle stage arrest in the ovary for extended periods before a luteinizing hormone surge induces entry into the first meiotic division. Cdh1 is an activator of the anaphase-promoting complex (APC) and APCcdh1 is normally restricted to late M to early G1 phases of the cell cycle. Here, we find that APCcdh1 is active in mouse oocytes and is necessary to maintain prophase arrest.
Development | 2013
Keith T. Jones; Simon I. R. Lane
Mammalian oocytes are particularly error prone in segregating their chromosomes during their two meiotic divisions. This results in the creation of an embryo that has inherited the wrong number of chromosomes: it is aneuploid. The incidence of aneuploidy rises significantly with maternal age and so there is much interest in understanding this association and the underlying causes of aneuploidy. The spindle assembly checkpoint, a surveillance mechanism that operates in all cells to prevent chromosome mis-segregation, and the cohesive ties that hold those chromosomes together, have thus both been the subject of intensive investigation in oocytes. It is possible that a lowered sensitivity of the spindle assembly checkpoint to certain types of chromosome attachment error may endow oocytes with an innate susceptibility to aneuploidy, which is made worse by an age-related loss in the factors that hold the chromosomes together.
Nature Cell Biology | 2007
A. Reis; Suzanne Madgwick; Heng Yu Chang; Ibtissem Nabti; Mark Levasseur; Keith T. Jones
The first female meiotic division (meiosis I, MI) is uniquely prone to chromosome segregation errors through non-disjunction, resulting in trisomies and early pregnancy loss. Here, we show a fundamental difference in the control of mammalian meiosis that may underlie such susceptibility. It involves a reversal in the well-established timing of activation of the anaphase-promoting complex (APC) by its co-activators cdc20 and cdh1. APCcdh1 was active first, during prometaphase I, and was needed in order to allow homologue congression, as loss of cdh1 speeded up MI, leading to premature chromosome segregation and a non-disjunction phenotype. APCcdh1 targeted cdc20 for degradation, but did not target securin or cyclin B1. These were degraded later in MI through APCcdc20, making cdc20 re-synthesis essential for successful meiotic progression. The switch from APCcdh1 to APCcdc20 activity was controlled by increasing CDK1 and cdh1 loss. These findings demonstrate a fundamentally different mechanism of control for the first meiotic division in mammalian oocytes that is not observed in meioses of other species.
Biochemical Journal | 2000
Keith T. Jones; Miho Matsuda; John Parrington; Matilda Katan; Karl Swann
A soluble phospholipase C (PLC) from boar sperm generates InsP(3) and hence causes Ca(2+) release when added to sea urchin egg homogenate. This PLC activity is associated with the ability of sperm extracts to cause Ca(2+) oscillations in mammalian eggs following fractionation. A sperm PLC may, therefore, be responsible for causing the observed Ca(2+) oscillations at fertilization. In the present study we have further characterized this boar sperm PLC activity using sea urchin egg homogenate. Consistent with a sperm PLC acting on egg PtdIns(4,5)P(2), the ability of sperm extracts to release Ca(2+) was blocked by preincubation with the PLC inhibitor U73122 or by the addition of neomycin to the homogenate. The Ca(2+)-releasing activity was also detectable in sperm from other species and in whole testis extracts. However, activity was not observed in extracts from other tissues. Moreover recombinant PLCbeta1, -gamma1, -gamma2, -delta1, all of which had higher specific activities than boar sperm extracts, were not able to release Ca(2+) in the sea urchin egg homogenate. In addition these PLCs were not able to cause Ca(2+) oscillations following microinjection into mouse eggs. These results imply that the sperm PLC possesses distinct properties that allow it to hydrolyse PtdIns(4,5)P(2) in eggs.
Biology of Reproduction | 2013
Tessa Lord; Brett Nixon; Keith T. Jones; R. John Aitken
ABSTRACT The quality of metaphase II oocytes deteriorates rapidly following ovulation as the result of an aging process associated with impaired fertilizing potential, disrupted developmental competence, and increased likelihood of embryonic resorption. Because oxidative stress accelerates the onset of apoptosis in oocytes and influences their capacity for fertilization, this study aimed to characterize the significance of such stress in the postovulatory aging of mouse oocytes in vitro. We investigated the ability of the potent antioxidant melatonin to arrest the aging process when used to supplement oocyte culture medium. This study demonstrated that oxidative stress may occur in oocytes after as little as 8 h in culture and coincides with the appearance of early apoptotic markers such as phosphatidylserine externalization, followed 16 h later by caspase activation (P < 0.05) and morphological evidence of oocyte senescence. Importantly, supplementation of oocyte culture medium with 1 mM melatonin was able to significantly relieve the time-dependent appearance of oxidative stress in oocytes (P < 0.05) and, as a result, significantly delay the onset of apoptosis (P < 0.05). Furthermore, melatonin supplementation extended the optimal window for fertilization of oocytes aged for 8 and 16 h in vitro (P < 0.05) and significantly improved the quality of the resulting embryos (P < 0.01). We conclude that melatonin may be a useful tool in a clinical setting to prevent the time-dependent deterioration of oocyte quality following prolonged culture in vitro.
EMBO Reports | 2006
A. Reis; Mark Levasseur; Heng Yu Chang; David J. Elliott; Keith T. Jones
Cdc20 and cdh1 are coactivators of the anaphase‐promoting complex (APC). APCcdc20 is necessary for the metaphase–anaphase transition and, at the end of mitosis, vertebrate cdc20 itself becomes a target for degradation through KEN‐box‐dependent APCcdh1 activity. By studying the degradation of fluorescent protein chimaeras in mammalian oocytes and early embryos, we found that cdc20 was degraded through two independent degradation signals (degrons), the KEN box and a newly described CRY box. In both oocytes and G1‐stage embryos, the rate of degradation through the CRY box was greater than through the KEN box, although both were mediated by APCcdh1. Thus, mammalian oocytes and embryos have the capacity to recognize two degrons in cdc20.