Keith V. Lawler
University of Nevada, Las Vegas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keith V. Lawler.
Physical Review A | 2011
D. J. Haxton; Keith V. Lawler
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is formulated for treating the coupled electronic and nuclear dynamics of diatomic molecules without the Born-Oppenheimer approximation. The method treats the full dimensionality of the electronic motion, uses no model interactions, and is in principle capable of an exact nonrelativistic description of diatomics in electromagnetic fields. An expansion of the wave function in terms of configurations of orbitals whose dependence on internuclear distance is only that provided by the underlying prolate spheroidal coordinate system is demonstrated to provide the key simplifications of the working equations that allow their practical solution. Photoionization cross sections are also computed from the MCTDHF wave function in calculations using short pulses.
Chemical Communications | 2013
Keith V. Lawler; Zeric Hulvey; Paul M. Forster
Metal(II) formates (Co and Ni) show a significantly larger heat of adsorption for xenon than krypton across all loadings due to size selectivity in the primary adsorption site.
Journal of Chemical Theory and Computation | 2014
David W. Small; Keith V. Lawler; Martin Head-Gordon
We describe an efficient implementation of the coupled cluster valence bond (CCVB) model. CCVB captures a certain essential part of the description of molecules with strong correlations (SC), which allows it to achieve correct energy profiles when covalent bonds are broken, while maintaining proper spin symmetry and size extensivity. To illustrate treatment of SC in bond breaking, we examine the symmetric dissociation of the sulfur allotropes S6 and S8 into triplet S atoms. To show applicability to larger systems and to explore whether CCVB can capture aspects of SC that arise in extended π systems, we report results for a series of acenes up to 12 fused benzene rings, with active spaces of up to 228 correlated electrons. The lowest-energy CCVB solutions found for two of the largest acenes show signatures consistent with multi-electron SC and partial delocalization.
Molecular Physics | 2008
Keith V. Lawler; John Parkhill; Martin Head-Gordon
Local active space correlation models based on the coupled-cluster doubles (CCD) model like Generalized Valence Bond Perfect Pairing (GVB-PP) and Imperfect Pairing (IP) are attractive methods for treating electron correlation, because they are computationally inexpensive and can describe strong correlations. However, they suffer from symmetry-breaking (SB) in systems with multiple resonance structures, which arises due to neglected correlations. We investigate the extent to which these problems can be removed by using second-order perturbation theory (PT) for weak correlations coupling three different electron pairs, and (infinite-order) coupled-cluster (CC) theory for stronger correlations involving electrons in only one or two pairs. The resulting Three-Pair Corrected Imperfect Pairing (TIP) method is explored here, and it is shown that to robustly combine CC and PT it is necessary to modify several aspects of the basic method. Most importantly, a penalty function term is introduced to ensure the PT amplitudes remain small. Comparison against CC treatment of the three-pair correlations suggests penalty terms will be beneficial for any hybrid CC/PT method that includes orbital optimization. The TIP method greatly reduces SB in aromatic hydrocarbons and recovers a significantly higher fraction of the valence electron correlation energy than IP.
Journal of Chemical Physics | 2008
Keith V. Lawler; Gregory J. O. Beran; Martin Head-Gordon
The origin of symmetry breaking (SB) in benzene in generalized valence bond methods is investigated within a coupled cluster formalism that correlates all valence electrons. Retention of a limited number of pair correlation amplitudes (as in the perfect- and imperfect-pairing models) that incompletely describes interpair correlations leads to symmetry breaking as the orbitals and amplitudes are optimized. Local correlation models that are exact for one, two, and three interacting pairs at the doubles excitation level are compared against the exact pair correlation treatment, which correlates four interacting pairs at once in the connected double substitution operator. For simplicity, this comparison is performed with a second-order model of electron correlation, which is reasonably faithful to the infinite-order result. The significant SB known for the one-pair model (perfect pairing) is not eliminated at the two-pair level, but is virtually eliminated at the three-pair level. Therefore, a tractable hybrid model is proposed, which combines three-pair correlations at the second-order level and infinite-order treatment for the strong imperfect-pairing correlations involving one and two-pair correlations. This model greatly reduces SB in benzene and larger delocalized pi systems such as naphthalene and the phenalenyl cation and anion. The resulting optimized orbitals are localized in the sigma space but exhibit significant delocalization in the pi space. This means that correlation effects associated with different resonance structures are treated in a more balanced way than if the pi orbitals localize, leading to reduced SB.
Journal of Chemical Physics | 2012
Westin Kurlancheek; Rohini C. Lochan; Keith V. Lawler; Martin Head-Gordon
Theory and implementation of the analytical nuclear gradient is presented for orbital optimized scaled opposite-spin perturbation theory (O2). Evaluation of the O2 analytical gradient scales with the 4th power of molecular size, like the O2 energy. Since the O2 method permits optimization of the orbitals in the presence of wavefunction-based electron correlation, it is suitable for problems where correlation effects determine the competition between localization and delocalization of an odd electron, or hole. One such problem is the description of a neutral soliton defect on an all-trans polyacetylene chain with an odd number of carbon atoms. We show that the results of the O2 method compare well to benchmark values for small polyenyl radicals. O2 is also efficient enough to be applied to longer chains where benchmark coupled cluster methods are unfeasible. For C(41)H(43), unrestricted orbital O2 calculations yield a soliton length of about 9 carbon atoms, while other unrestricted orbital methods such as Hartree-Fock, and the B3LYP and ωB97X-D density functionals, delocalize the soliton defect over the entire chain. The O2 result is about half the width inferred experimentally.
Journal of Physical Chemistry A | 2010
Keith V. Lawler; David W. Small; Martin Head-Gordon
Spin unrestriction is typically defined as a free variation of the molecular orbitals of different spins in order to lower the molecular energy. When applied to approximate active space electron correlation methods, such as generalized valence bond coupled cluster (GVB-CC) models, this approach often leads to undesirable artifacts. We therefore present an alternative unrestricted in active pairs (UAP) procedure for spin polarization in GVB-CC methods, which resembles the corresponding orbitals of unrestricted Hartree-Fock theory. The UAP procedure permits spin polarization only within the two orbital subspaces describing each electron pair (consisting of one nominally occupied and one virtual orbital). This great reduction to just a linear number of degrees of freedom associated with spin polarization eliminates many of the undesirable artifacts associated with unconstrained spin unrestriction. The UAP procedure is tested on a variety of potential curves for bond breaking and the properties of small radicals as well as larger polyenyl radicals, allyl, pentadienyl, and heptatrienyl.
Physical Review Materials | 2018
Dean Smith; Keith V. Lawler; Miguel Martinez-Canales; Austin W Daykin; Zachary Fussell; G Alexander Smith; Christian Childs; Jesse S. Smith; Chris J. Pickard; Ashkan Salamat
The stability, structure and properties of carbonate minerals at lower mantle conditions has significant impact on our understanding of the global carbon cycle and the composition of the interior of the Earth. In recent years, there has been significant interest in the behavior of carbonates at lower mantle conditions, specifically in their carbon hybridization, which has relevance for the storage of carbon within the deep mantle. Using high-pressure synchrotron X-ray diffraction in a diamond anvil cell coupled with direct laser heating of CaCO
Molecular Physics | 2016
Jeremiah R. Jones; Francois Henry Rouet; Keith V. Lawler; Eugene Vecharynski; Khaled Z. Ibrahim; Samuel Williams; Brant Abeln; Chao Yang; William McCurdy; Daniel J. Haxton; Xiaoye S. Li; Thomas N. Rescigno
_{3}
Inorganic Chemistry | 2016
Bradley C. Childs; Henrik Braband; Keith V. Lawler; Daniel S. Mast; Laurent Bigler; Urs Stalder; Paul M. Forster; Kenneth R. Czerwinski; Roger Alberto; Alfred P. Sattelberger; Frederic Poineau
using a CO