Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kejun Deng is active.

Publication


Featured researches published by Kejun Deng.


Plant Cell Reports | 2016

Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.

Xuelian Zheng; Shixin Yang; Dengwei Zhang; Zhaohui Zhong; Xu Tang; Kejun Deng; Jianping Zhou; Yiping Qi; Yong Zhang

Key messageA method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice.AbstractClustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.


Plant and Cell Physiology | 2016

Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza.

Tao Wei; Kejun Deng; Dongqing Liu; Yonghong Gao; Yu Liu; Meiling Yang; Lipeng Zhang; Xuelian Zheng; Chunguo Wang; Wenqin Song; Chengbin Chen; Yong Zhang

Drought decreases crop productivity more than any other type of environmental stress. Transcription factors (TFs) play crucial roles in regulating plant abiotic stress responses. The Arabidopsis thaliana gene DREB1A/CBF3, encoding a stress-inducible TF, was introduced into Salvia miltiorrhiza Ectopic expression of AtDREB1A resulted in increased drought tolerance, and transgenic lines had higher relative water content and Chl content, and exhibited an increased photosynthetic rate when subjected to drought stress. AtDREB1A transgenic plants generally displayed lower malondialdehyde (MDA), but higher superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress. In particular, plants with ectopic AtDREB1A expression under the control of the stress-induced RD29A promoter exhibited more tolerance to drought compared with p35S::AtDREB1A transgenic plants, without growth inhibition or phenotypic aberrations. Differential gene expression profiling of wild-type and pRD29A::AtDREB1A transgenic plants following drought stress revealed that the expression levels of various genes associated with the stress response, photosynthesis, signaling, carbohydrate metabolism and protein protection were substantially higher in transgenic plants. In addition, the amount of salvianolic acids and tanshinones was significantly elevated in AtDREB1A transgenic S. miltiorrhiza roots, and most of the genes in the related biosynthetic pathways were up-regulated. Together, these results demonstrated that inducing the expression of a TF can effectively regulate multiple genes in the stress response pathways and significantly improve the resistance of plants to abiotic stresses. Our results also suggest that genetic manipulation of a TF can improve production of valuable secondary metabolites by regulating genes in associated pathways.


Frontiers in Plant Science | 2017

CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice

Jianping Zhou; Kejun Deng; Yan Cheng; Zhaohui Zhong; Li Tian; Xu Tang; Aiting Tang; Xuelian Zheng; Tao Zhang; Yiping Qi; Yong Zhang

MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in plant development and stress responses. Loss-of-function analysis of miRNA genes has been traditionally challenging due to lack of appropriate knockout tools. In this study, single miRNA genes (OsMIR408 and OsMIR528) and miRNA gene families (miR815a/b/c and miR820a/b/c) in rice were targeted by CRISPR-Cas9. We showed single strand conformation polymorphism (SSCP) is a more reliable method than restriction fragment length polymorphism (RFLP) for identifying CRISPR-Cas9 generated mutants. Frequencies of targeted mutagenesis among regenerated T0 lines ranged from 48 to 89% at all tested miRNA target sites. In the case of miRNA528, three independent guide RNAs (gRNAs) all generated biallelic mutations among confirmed mutant lines. When targeted by two gRNAs, miRNA genes were readily to be deleted at a frequency up to 60% in T0 rice lines. Thus, we demonstrate CRISPR-Cas9 is an effective tool for knocking out plant miRNAs. Single-base pair (bp) insertion/deletion mutations (indels) in mature miRNA regions can lead to the generation of functionally redundant miRNAs. Large deletions at either the mature miRNA or the complementary miRNA* were found to readily abolish miRNA function. Utilizing mutants of OsMIR408 and OsMIR528, we find that knocking out a single miRNA can result in expression profile changes of many other seemingly unrelated miRNAs. In a case study on OsMIR528, we reveal it is a positive regulator in salt stress. Our work not only provides empirical guidelines on targeting miRNAs with CRISPR-Cas9, but also brings new insights into miRNA function and complex cross-regulation in rice.


Frontiers in Plant Science | 2017

Modulating AtDREB1C Expression Improves Drought Tolerance in Salvia miltiorrhiza

Tao Wei; Kejun Deng; Qingxia Zhang; Yonghong Gao; Yu Liu; Meiling Yang; Lipeng Zhang; Xuelian Zheng; Chunguo Wang; Zhiwei Liu; Chengbin Chen; Yong Zhang

Dehydration responsive element binding proteins are transcription factors of the plant-specific AP2 family, many of which contribute to abiotic stress responses in several plant species. We investigated the possibility of increasing drought tolerance in the traditional Chinese medicinal herb, Salvia miltiorrhiza, through modulating the transcriptional regulation of AtDREB1C in transgenic plants under the control of a constitutive (35S) or drought-inducible (RD29A) promoter. AtDREB1C transgenic S. miltiorrhiza plants showed increased survival under severe drought conditions compared to the non-transgenic wild-type (WT) control. However, transgenic plants with constitutive overexpression of AtDREB1C showed considerable dwarfing relative to WT. Physiological tests suggested that the higher chlorophyll content, photosynthetic capacity, and superoxide dismutase, peroxidase, and catalase activity in the transgenic plants enhanced plant drought stress resistance compared to WT. Transcriptome analysis of S. miltiorrhiza following drought stress identified a number of differentially expressed genes (DEGs) between the AtDREB1C transgenic lines and WT. These DEGs are involved in photosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, ribosome, starch and sucrose metabolism, and other metabolic pathways. The modified pathways involved in plant hormone signaling are thought to be one of the main causes of the increased drought tolerance of AtDREB1C transgenic S. miltiorrhiza plants.


PLOS ONE | 2015

Identification of Novel miRNAs and miRNA Expression Profiling in Wheat Hybrid Necrosis

Jianping Zhou; Yan Cheng; Meiqi Yin; Ennian Yang; Wenping Gong; Cheng Liu; Xuelian Zheng; Kejun Deng; Zhenglong Ren; Yong Zhang

MicroRNAs (miRNAs) play essential roles in a vast array of biological processes, including growth and development, defense against viral infection, and responses to environmental changes in plant. Wheat hybrid necrosis is an interesting genetic phenomenon observed frequency and it is lethal or semi lethal, resulting in gradual death or loss of productivity. However, the molecular basis and mechanisms associated with hybrid necrosis in wheat are still not well understood. Here, we report the population and expression profiles of miRNAs in wheat hybrid necrosis. We identified a total of 57 conserved miRNA families as well as 182 putative novel miRNAs. Expression profiling revealed that expression of 49 known miRNAs and 165 novel miRNAs was changed in hybrid necrosis. And the expression levels of some miRNAs and their predicated targets have been confirmed by qRT-PCR. These results indicate that these miRNAs, especially miR159, miR166, miR167 and miR5072 could be involved in the extensive regulation of gene expression in response to hybrid necrosis.


Protoplasma | 2017

Overexpression of AtEDT1 promotes root elongation and affects medicinal secondary metabolite biosynthesis in roots of transgenic Salvia miltiorrhiza

Yu Liu; Geng Sun; Zhaohui Zhong; Linyi Ji; Yong Zhang; Jianping Zhou; Xuelian Zheng; Kejun Deng

Medicinal secondary metabolites (salvianolic acids and tanshinones) are valuable natural bioactive compounds in Salvia miltiorrhiza and have widespread applications. Improvement of medicinal secondary metabolite accumulation through biotechnology is necessary and urgent to satisfy their increasing demand. Herein, it was demonstrated that the overexpression of the transcription factor Arabidopsis thaliana-enhanced drought tolerance 1 (AtEDT1) could affect medicinal secondary metabolite accumulation. In this study, we observed that the transgenic lines significantly conferred drought tolerance phenotype. Meanwhile, we found that the overexpression of AtEDT1 promoted root elongation in S. miltiorrhiza. Interestingly, we also found that the overexpression of AtEDT1 determined the accumulation of salvianolic acids, such as rosmarinic acid, lithospermic acid, salvianolic acid B, and total salvianolic acids due to the induction of the expression levels of salvianolic acid biosynthetic genes. Conversely, S. miltiorrhiza plants overexpressing the AtEDT1 transgene showed a decrease in tanshinone synthesis. Our results demonstrated that the overexpression of AtEDT1 significantly increased the accumulation of salvianolic acids in S. miltiorrhiza. Further studies are required to better elucidate the functional role of AtEDT1 in the regulation of phytochemical compound synthesis.


International Journal of Molecular Sciences | 2014

Comparative Transcriptome Analysis to Reveal Genes Involved in Wheat Hybrid Necrosis

Yong Zhang; Yan Cheng; Jiahui Guo; Ennian Yang; Cheng Liu; Xuelian Zheng; Kejun Deng; Jianping Zhou

Wheat hybrid necrosis is an interesting genetic phenomenon that is found frequently and results in gradual death or loss of productivity of wheat. However, the molecular basis and mechanisms of this genetic phenomenon are still not well understood. In this study, the transcriptomes of wheat hybrid necrosis F1 and its parents (Neimai 8 and II469) were investigated using digital gene expression (DGE). A total of 1300 differentially expressed genes were identified, indicating that the response to hybrid necrosis in wheat is complicated. The assignments of the annotated genes based on Gene Ontology (GO) revealed that most of the up-regulated genes belong to “universal stress related”, “DNA/RNA binding”, “protein degradation” functional groups, while the down-regulated genes belong to “carbohydrate metabolism” and “translation regulation” functional groups. These findings suggest that these pathways were affected by hybrid necrosis. Our results provide preliminarily new insight into the underlying molecular mechanisms of hybrid necrosis and will help to identify important candidate genes involved in wheat hybrid necrosis.


Plant Cell Reports | 2018

Multiplex QTL editing of grain-related genes improves yield in elite rice varieties

Jianping Zhou; Xuhui Xin; Yao He; Hongqiao Chen; Qian Li; Xu Tang; Zhaohui Zhong; Kejun Deng; Xuelian Zheng; Sayed Abdul Akher; Guangze Cai; Yiping Qi; Yong Zhang

Key messageSignificant yield increase has been achieved by simultaneous introduction of three trait-related QTLs in three rice varieties with multiplex editing by CRISPR–Cas9.AbstractUsing traditional breeding approaches to develop new elite rice varieties with high yield and superior quality is challenging. It usually requires introduction of multiple trait-related quantitative trait loci (QTLs) into an elite background through multiple rounds of crossing and selection. CRISPR–Cas9-based multiplex editing of QTLs represents a new breeding strategy that is straightforward and cost effective. To test this approach, we simultaneously targeted three yield-related QTLs for editing in three elite rice varieties, namely J809, L237 and CNXJ. The chosen yield-related QTL genes are OsGS3, OsGW2 and OsGn1a, which have been identified to negatively regulate the grain size, width and weight, and number, respectively. Our approach rapidly generated all seven combinations of single, double and triple mutants for the target genes in elite backgrounds. Detailed analysis of these mutants revealed differential contributions of QTL mutations to yield performance such as grain length, width, number and 1000-grain weight. Overall, the contributions are additive, resulting in 68 and 30% yield per panicle increase in triple mutants of J809 and L237, respectively. Our data hence demonstrates a promising genome editing approach for rapid breeding of QTLs in elite crop varieties.


International Journal of Molecular Sciences | 2018

Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis

Tao Wei; Kejun Deng; Hongbin Wang; Lipeng Zhang; Chunguo Wang; Wenqin Song; Yong Zhang; Chengbin Chen

In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A-expressing transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904 differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the ‘signal transduction mechanisms’ category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs associated with “ribosome”, “plant hormone signal transduction”, photosynthesis”, “plant-pathogen interaction”, “glycolysis/gluconeogenesis” and “carbon fixation” are hypothesized to perform major functions in drought resistance in AtDREB1A-expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.


Frontiers in Plant Science | 2018

MIGS as a Simple and Efficient Method for Gene Silencing in Rice

Xuelian Zheng; Lijia Yang; Qian Li; Linyi Ji; Aiting Tang; Lili Zang; Kejun Deng; Jianping Zhou; Yong Zhang

MiRNA-induced gene silencing (MIGS) technology is a special kind of RNA interference technology that uses miR173 to mediate the production of trans-acting siRNA (ta-siRNA) to achieve target gene silencing. This technique has successfully mediated the silencing of interested genes in plants such as Arabidopsis, tobacco, petunia, etc. In order to establish the MIGS technology system in monocots such as rice, we constructed the MIGS backbone vectors pZHY930, pZHY931, pZHY932, and pZHY933 with different with promoters to regulate the expression of miR173 and miR173_ts. The rice OsPDS reporter gene was selected to compare the efficiency of four MIGS backbone vectors by the ratio of albino plants. The results showed that all the four backbone vectors could effectively mediate the target gene silencing, and pZHY932 showed highest efficiency up to 90%. Through MIGS silencing of endogenous OsROC5 and OsLZAY1 in rice, we successfully obtained rice mutant plants with rice leaf roll and tillering angles increasing, and further confirmed that MIGS backbone vector can efficiently mediate target gene silencing in rice. On the other hand, in order to verify the efficiency of MIGS-mediated multi-gene silencing in rice, we constructed two double-gene silencing vectors OsPDS and OsROC5, OsPDS and OsLZAY1, based on pZHY932 backbone vector. Double mutant rice plants with increased leaf and albino tiller angles. And we successfully obtained bladed leaf albino seedling and increased tillering angle albino seedling double-silencing mutations. We further constructed a MIGS-OsGBSS gene silencing vector and obtained rice materials with significantly reduced amylose content. This result indicated that MIGS could be an efficient method in monocots gene silencing and gene function analysis.

Collaboration


Dive into the Kejun Deng's collaboration.

Top Co-Authors

Avatar

Yong Zhang

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xuelian Zheng

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jianping Zhou

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Zhaohui Zhong

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Tang

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yu Liu

University of Electronic Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge