Kejun Du
Fourth Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kejun Du.
Biochimica et Biophysica Acta | 2011
Ying-Yong Zhao; Xuefeng Shen; Xu Chao; Charlene C. Ho; Xian-Long Cheng; Yongmin Zhang; Rui-Chao Lin; Kejun Du; Wenjing Luo; Jingyuan Chen; Wenji Sun
BACKGROUND Mushrooms have been used in Asia as traditional foods and medicines for a long time. Ergosta-4,6,8(14),22-tetraen-3-one (ergone) is one of the well-known bioactive steroids, which exists widely in various medicinal fungi such as Polyporus umbellatus, Russula cyanoxantha, and Cordyceps sinensis. Ergone has been demonstrated to possess cytotoxic activity. However, the molecular mechanisms by which ergone exerts its cytotoxic activity are currently unknown. METHODS In the present study, ergone possessed a remarkable anti-proliferative activity toward human hepatocellular carcinoma HepG2 cells. We assayed the cell cycle by flow cytometry using PI staining; investigated the exposure of phosphatidylserine at the outer layer of the cytoplasmic membrane by the FITC-annexin V/PI staining; observed the nuclear fragmentation by Hoechst 33258 staining and studied the protein expression of Bax, Bcl-2, p-53, procaspase-3, -8, -9, PARP and cleaved PARP by Western blotting analysis. RESULTS Cells treated with ergone showed typical markers of apoptosis: G2/M cell cycle arrest, chromatin condensation, nuclear fragmentation, and phosphatidylserine exposure. Furthermore, PARP-cleavage; activation of caspase-3, -8, -9; up-regulation of Bax and down-regulation of Bcl-2 were observed in HepG2 cells treated with ergone, which show that both the intrinsic and extrinsic apoptotic pathways are involved in ergone-induced apoptosis in HepG2 cells. Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in HepG2 cells in a caspase-dependent manner. GENERAL SIGNIFICANCE In this study, we reported for the first time that ergone-induced apoptosis through activating the caspase. These results would be useful for the further utilization of many medicinal fungi in cancer treatment.
Toxicology Letters | 2014
Jun An; Tongjian Cai; Honglei Che; Tao Yu; Zipeng Cao; Xinqin Liu; Fang Zhao; Jinfei Jing; Xuefeng Shen; Mingchao Liu; Kejun Du; Jingyuan Chen; Wenjing Luo
miRNAs have been found to contribute to normal brain functions, nervous system diseases, as well as neurotoxicities induced by external agents. However, whether they are involved in lead-induced neurotoxicities is still not clear. To identify that, a lead-induced chronic neurotoxicity model of rats was built. Both miRNA microarray analysis and qRT-PCR were performed to determine the change of miRNA expression in hippocampus. Then 3 bioinformatics databases were used to analyze the relative target genes of these miRNA, which were further confirmed by qRT-PCR and Western blot. In the present study, lead exposure resulted in the changed expression of 7 miRNAs: miR-204, miR-211, miR-448, miR-449a, miR-34b, and miR-34c were greatly up-regulated while miR-494 was greatly down-regulated. Bioinformatics analysis results showed that the target genes of 6 up-regulated miRNAs were related to neural injury and neurodegeration, axon and synapse function, neural development and regeneration. Correspondingly, the expression levels of mature mRNAs and proteins of three target genes (Bcl-2, Itpr1, and Map2k1) were greatly repressed, verifying the results of bioinformatics analysis. Taken together, our results showed that the expression of several miRNAs reported to be associated with neurophysiological pathways and neurodegenerative diseases changed in rat hippocampus following chronic lead exposure. These miRNAs may play important roles in lead-induced neurotoxicity.
Brain Research | 2010
Tongjian Cai; Ting Yao; Gang Zheng; Yaoming Chen; Kejun Du; Yunxin Cao; Xuefeng Shen; Jingyuan Chen; Wenjing Luo
Manganese has been known to induce neurological disorders. In the present study, we determined the effect of manganese on the expression of α-synuclein in PC12 cells and its role in manganese-induced cytotoxicity. We also investigated the relationship between α-synuclein expression and the change of ERK1/2 MAPK activity. In our research, manganese exposure induced the overexpression of α-synuclein, while siRNA knockdown of α-synuclein reversed manganese-induced cytotoxicity. Furthermore, manganese induced the activation of ERK1/2 MAPK. The MEK1 inhibitor PD98059, which inhibits the activation of ERK MAPK, attenuated the overexpression of α-synuclein and the cytotoxicity induced by manganese. In conclusion, our studies show that manganese may induce the overexpression of α-synuclein via ERK1/2 activation, which may play a role in manganese-induced cytotoxicity.
Toxicological Sciences | 2011
Tongjian Cai; Honglei Che; Ting Yao; Yaoming Chen; Chuanshu Huang; Wenbing Zhang; Kejun Du; Jianbin Zhang; Yunxin Cao; Jingyuan Chen; Wenjing Luo
Manganese has long been known to induce neurological degenerative disorders. Emerging evidence indicates that hyperphosphorylated tau is associated with neurodegenerative diseases, but whether such hyperphosphorylation plays a role in manganese-induced neurotoxicity remains unclear. To fill this gap, we investigated the effects of manganese on tau phosphorylation in PC12 cells. In our present research, treatment of cells with manganese increased the phosphorylation of tau at Ser199, Ser202, Ser396, and Ser404 as detected by Western blot. Moreover, this manganese-induced tau phosphorylation paralleled the activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK). The mitogen-activated protein kinase kinase-1 (MEK1) inhibitor PD98059, which inhibits the activation of ERK MAPK, partially attenuated manganese-induced tau hyperphosphorylation and cytotoxicity. Moreover, the activation of ERK MAPK was involved in the activation of glycogen synthase kinase-3β (GSK-3β) kinase, which also contributed to the hyperphosphorylation of tau and the cytotoxicity in PC12 cells induced by manganese. Taken together, we found for the first time that the exposure to manganese can cause the hyperphosphorylation of tau, which may be connected with the activation of ERK MAPK.
Brain Research | 2007
Tongjian Cai; Ting Yao; Yan Li; Yaoming Chen; Kejun Du; Jingyuan Chen; Wenjing Luo
Manganese has been known to induce neurological disorders similar to Parkinsons disease. The dysfunction of ubiquitin-proteasome system, a pathway involved in detoxification and targeting of damaged proteins, is connected with Parkinsons disease pathogenesis. Oxidative stress may be involved in Parkinsons disease, and may also be associated with manganese-induced neurotoxicity. In the present study, we determined the effects of manganese chloride on proteasome activity in PC12 cells. Furthermore, we investigated the relationship between oxidative stress and the change of proteasome activity. The proteasome activity of PC12 cells was measured by an ELISA method. Selective oxidative stress parameters, including malondialdehyde and protein carbonyl, were measured in PC12 cells treated with manganese chloride. Cell survival and apoptosis were measured by methyl thiazolyl tetrazolium and terminal transferase-mediated dUTP nick end-labeling. In our research, manganese chloride exposure inhibited the activity of proteasome and induced oxidative stress. Both can be reversed by antioxidant agent N-acetylcysteine. N-acetylcysteine also inhibited the cytotoxicity induced by manganese chloride. In conclusion, our results imply that proteasome inhibition may be associated with manganese-induced cytotoxicity in dopaminergic neurons, which may be connected with oxidative damage.
Cancer Investigation | 2009
Wenjing Luo; Yaoming Chen; Mingchao Liu; Kejun Du; Gang Zheng; Tongjian Cai; Wenbin Zhang; Fang Zhao; Ting Yao; Ruihua Yang; Jingyuan Chen
EB1089 exhibits a high level of antiproliferative activity against various tumors. However, it is not known whether the mechanism of EB1089 induced the growth inhibition in human hepatic-carcinoma. Here we found that EB1089 significantly reduced cell growth in human hepatoma cells (Hep-G2) and blocked Hep-G2 cell-associated tumor formation in nude mice. The growth inhibition was linked to cell cycle G1 phase arrest by the accumulation of p27 and a reduction of Skp2. Knockdown of Skp2 reversed the p27 induction and G1 arrest. Taken together, our data indicate that EB1089 inhibitory activity is associated with alteration of cell cycle checkpoints through Skp2-dependent p27 induction in Hep-G2 cells.
Biochemical and Biophysical Research Communications | 2010
Kejun Du; Yaoming Chen; Zongming Dai; Yuan Bi; Tongjian Cai; Lichao Hou; Yubo Chai; Qinghe Song; Sumin Chen; Wenjing Luo; Jingyuan Chen
Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. DQ316984 and DQ320011), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.
Scientific Reports | 2018
Zai-Hua Zhao; Gang Zheng; Tao Wang; Kejun Du; Xiao Han; Wenjing Luo; Xuefeng Shen; Jingyuan Chen
Lead (Pb) is known to impair children’s cognitive function. It has been previously shown that developmental Pb exposure alters dendritic spine formation in hippocampal pyramidal neurons. However, the underlying mechanism has not yet been defined. In this study, a low-level gestational Pb exposure (GLE) rat model was employed to investigate the impact of Pb on the spine density of the hippocampal pyramidal neurons and its regulatory mechanism. Pb exposure resulted in impaired performance of the rats in the Morris water maze tasks, and in decreased EPSC amplitudes in hippocampal CA3-CA1 regions. With a 3D reconstruction by the Imaris software, the results from Golgi staining showed that the spine density in the CA1 region was reduced in the Pb-exposed rats in a dose-dependent manner. Decreased spine density was also observed in cultured hippocampal neurons following the Pb treatment. Furthermore, the expression level of NLGN1, a postsynaptic protein that mediates synaptogenesis, was significantly decreased following the Pb exposure both in vivo and in vitro. Up-regulation of NLGN1 in cultured primary neurons partially attenuated the impact of Pb on the spine density. Taken together, our resultssuggest that Pb exposure alters spine plasticity in the developing hippocampus by down-regulating NLGN1 protein levels.
Toxicology | 2008
Kejun Du; Yubo Chai; Lichao Hou; Wenhui Chang; Suming Chen; Wenjing Luo; Tongjian Cai; Zhang X; Chen Nc; Yaoming Chen; Jingyuan Chen
Chinese journal of cellular and molecular immunology | 2006
Dai Zm; Chen Sm; Kejun Du; Chen Nc; Song Qh; Luo Wj; Chen Jy