Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelan G. Tantisira is active.

Publication


Featured researches published by Kelan G. Tantisira.


Human Heredity | 2003

Estimation and Tests of Haplotype-Environment Interaction when Linkage Phase Is Ambiguous

Stephen Lake; Helen N. Lyon; Kelan G. Tantisira; Edwin K. Silverman; Scott T. Weiss; Nan M. Laird; Daniel J. Schaid

In the study of complex traits, the utility of linkage analysis and single marker association tests can be limited for researchers attempting to elucidate the complex interplay between a gene and environmental covariates. For these purposes, tests of gene-environment interactions are needed. In addition, recent studies have indicated that haplotypes, which are specific combinations of nucleotides on the same chromosome, may be more suitable as the unit of analysis for statistical tests than single genetic markers. The difficulty with this approach is that, in standard laboratory genotyping, haplotypes are often not directly observable. Instead, unphased marker phenotypes are collected. In this article, we present a method for estimating and testing haplotype-environment interactions when linkage phase is potentially ambiguous. The method builds on the work of Schaid et al. [2002] and is applicable to any trait that can be placed in the generalized linear model framework. Simulations were run to illustrate the salient features of the method. In addition, the method was used to test for haplotype-smoking exposure interaction with data from the Childhood Asthma Management Program.


The New England Journal of Medicine | 2011

Genomewide Association between GLCCI1 and Response to Glucocorticoid Therapy in Asthma

Kelan G. Tantisira; Jessica Lasky-Su; Michishige Harada; Amy Murphy; Augusto A. Litonjua; Blanca E. Himes; Christoph Lange; Ross Lazarus; Jody S. Sylvia; Barbara J. Klanderman; Qing Ling Duan; Weiliang Qiu; Tomomitsu Hirota; Fernando D. Martinez; David T. Mauger; Christine A. Sorkness; Stanley J. Szefler; Stephen C. Lazarus; Robert F. Lemanske; Stephen P. Peters; John J. Lima; Yusuke Nakamura; Mayumi Tamari; Scott T. Weiss

BACKGROUND The response to treatment for asthma is characterized by wide interindividual variability, with a significant number of patients who have no response. We hypothesized that a genomewide association study would reveal novel pharmacogenetic determinants of the response to inhaled glucocorticoids. METHODS We analyzed a small number of statistically powerful variants selected on the basis of a family-based screening algorithm from among 534,290 single-nucleotide polymorphisms (SNPs) to determine changes in lung function in response to inhaled glucocorticoids. A significant, replicated association was found, and we characterized its functional effects. RESULTS We identified a significant pharmacogenetic association at SNP rs37972, replicated in four independent populations totaling 935 persons (P=0.0007), which maps to the glucocorticoid-induced transcript 1 gene (GLCCI1) and is in complete linkage disequilibrium (i.e., perfectly correlated) with rs37973. Both rs37972 and rs37973 are associated with decrements in GLCCI1 expression. In isolated cell systems, the rs37973 variant is associated with significantly decreased luciferase reporter activity. Pooled data from treatment trials indicate reduced lung function in response to inhaled glucocorticoids in subjects with the variant allele (P=0.0007 for pooled data). Overall, the mean (±SE) increase in forced expiratory volume in 1 second in the treated subjects who were homozygous for the mutant rs37973 allele was only about one third of that seen in similarly treated subjects who were homozygous for the wild-type allele (3.2±1.6% vs. 9.4±1.1%), and their risk of a poor response was significantly higher (odds ratio, 2.36; 95% confidence interval, 1.27 to 4.41), with genotype accounting for about 6.6% of overall inhaled glucocorticoid response variability. CONCLUSIONS A functional GLCCI1 variant is associated with substantial decrements in the response to inhaled glucocorticoids in patients with asthma.


Nature Genetics | 2011

Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population

Tomomitsu Hirota; Atsushi Takahashi; Michiaki Kubo; Tatsuhiko Tsunoda; Kaori Tomita; Satoru Doi; Kimie Fujita; Akihiko Miyatake; Tadao Enomoto; Takehiko Miyagawa; Mitsuru Adachi; Hiroshi Tanaka; Akio Niimi; Hisako Matsumoto; Isao Ito; Hironori Masuko; Tohru Sakamoto; Nobuyuki Hizawa; Masami Taniguchi; John J. Lima; Charles G. Irvin; Stephen P. Peters; Blanca E. Himes; Augusto A. Litonjua; Kelan G. Tantisira; Scott T. Weiss; Naoyuki Kamatani; Yusuke Nakamura; Mayumi Tamari

Bronchial asthma is a common inflammatory disease caused by the interaction of genetic and environmental factors. Through a genome-wide association study and a replication study consisting of a total of 7,171 individuals with adult asthma (cases) and 27,912 controls in the Japanese population, we identified five loci associated with susceptibility to adult asthma. In addition to the major histocompatibility complex and TSLP-WDR36 loci previously reported, we identified three additional loci: a USP38-GAB1 locus on chromosome 4q31 (combined P = 1.87 × 10−12), a locus on chromosome 10p14 (P = 1.79 × 10−15) and a gene-rich region on chromosome 12q13 (P = 2.33 × 10−13). We observed the most significant association with adult asthma at rs404860 in the major histocompatiblity complex region (P = 4.07 × 10−23), which is close to rs2070600, a SNP previously reported for association with FEV1/FVC in genome-wide association studies for lung function. Our findings offer a better understanding of the genetic contribution to asthma susceptibility.


Clinical Pharmacology & Therapeutics | 2007

The Pharmacogenetics Research Network: From SNP Discovery to Clinical Drug Response

Kathleen M. Giacomini; Claire M. Brett; Russ B. Altman; Neal L. Benowitz; M E Dolan; David A. Flockhart; Julie A. Johnson; Daniel F. Hayes; Teri E. Klein; Ronald M. Krauss; Deanna L. Kroetz; Howard L. McLeod; Anne Nguyen; Mark J. Ratain; Mary V. Relling; Victor I. Reus; Dan M. Roden; C A Schaefer; Alan R. Shuldiner; Todd C. Skaar; Kelan G. Tantisira; Rachel F. Tyndale; L. Wang; Richard M. Weinshilboum; Scott T. Weiss; Issam Zineh

The NIH Pharmacogenetics Research Network (PGRN) is a collaborative group of investigators with a wide range of research interests, but all attempting to correlate drug response with genetic variation. Several research groups concentrate on drugs used to treat specific medical disorders (asthma, depression, cardiovascular disease, addiction of nicotine, and cancer), whereas others are focused on specific groups of proteins that interact with drugs (membrane transporters and phase II drug‐metabolizing enzymes). The diverse scientific information is stored and annotated in a publicly accessible knowledge base, the Pharmacogenetics and Pharmacogenomics Knowledge base (PharmGKB). This report highlights selected achievements and scientific approaches as well as hypotheses about future directions of each of the groups within the PGRN. Seven major topics are included: informatics (PharmGKB), cardiovascular, pulmonary, addiction, cancer, transport, and metabolism.


Thorax | 2003

Association of body mass with pulmonary function in the Childhood Asthma Management Program (CAMP)

Kelan G. Tantisira; Augusto A. Litonjua; Scott T. Weiss; Anne L. Fuhlbrigge

Background: While increases in body mass index (BMI) have been associated with the incidence and prevalence of asthma, the mechanisms behind this association are unclear. Methods: We hypothesised that BMI would be independently associated with measures of asthma severity in a population of children with mild to moderate asthma enrolled in the Childhood Asthma Management Program (CAMP). A multivariable baseline cross sectional analysis of BMI with our outcomes of interest was performed. Results: BMI was generally not associated with symptoms, nor was it associated with atopy. While BMI was positively associated with the methacholine concentration that causes a 20% fall in forced expiratory volume in 1 second (PC20FEV1), this association did not persist after adjustment for FEV1. Increasing BMI was associated with increasing FEV1 (β = 0.006 l, 95% CI (0.001 to 0.01)) and forced vital capacity (FVC) (β = 0.012 l, 95% CI (0.007 to 0.017)). However, decrements in the FEV1/FVC ratio were noted with increasing BMI (β = −0.242, 95% CI (−0.118 to −0.366)). Thus, an increase in BMI of 5 units was associated with a decrease in FEV1/FVC of over 1%. Conclusions: Although the association of FEV1 and FVC with BMI did not support our initial hypothesis, the decrease noted in the FEV1/FVC ratio has potential relevance in the relationship between BMI and asthma severity.


Proceedings of the National Academy of Sciences of the United States of America | 2004

TBX21: A functional variant predicts improvement in asthma with the use of inhaled corticosteroids

Kelan G. Tantisira; Eun Sook Hwang; Benjamin A. Raby; Eric S. Silverman; Stephen Lake; Brent Richter; Stanford L. Peng; Jeffrey M. Drazen; Laurie H. Glimcher; Scott T. Weiss

TBX21 encodes for the transcription factor T-bet (T-box expressed in T cells), which influences naïve T lymphocyte development and has been implicated in asthma pathogenesis. Specifically, the T-bet knockout mouse spontaneously develops airway hyperresponsiveness and other changes consistent with asthma. Because airway responsiveness is moderated by the use of inhaled corticosteroids in asthma, it is conceivable that genetic variation in TBX21 may alter asthma phenotypes in a treatment-specific fashion. Here we demonstrate that the nonsynonymous variation in TBX21 coding for replacement of histidine 33 with glutamine is associated with significant improvement in the PC20 (a measure of airway responsiveness) of asthmatic children in a large clinical trial spanning 4 years. We note that this increase occurs only in the children randomized to inhaled corticosteroids and that it dramatically enhances the overall improvement in PC20 associated with inhaled corticosteroid usage. The average PC20 at trial end for subjects on inhaled corticosteroids possessing a variant allele was in the normal range for nonasthmatics. In cellular models, we show that the TBX21 variant increases T helper 1 and decreases T helper 2 cytokine expression comparably with wild type. TBX21 may thus be an important determinant pharmacogenetic response to the therapy of asthma with inhaled corticosteroids.


Molecular Psychiatry | 2004

Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans

Julio Licinio; O'Kirwan F; Kris Irizarry; Barry Merriman; Sarika Thakur; Jepson R; Stephen Lake; Kelan G. Tantisira; Scott T. Weiss; Ma-Li Wong

There are well-replicated, independent lines of evidence supporting a role for corticotropin-releasing hormone (CRH) in the pathophysiology of depression. CRH receptor 1 (CRHR1), which we first mapped in the brain in 1994, has been implicated in the treatment of depression and anxiety. We studied the association of CRHR1 genotypes with the phenotype of antidepressant treatment response in 80 depressed Mexican-Americans in Los Angeles who completed a prospective randomized, placebo lead-in, double-blind treatment of fluoxetine or desipramine, with active treatment for 8 weeks. Subjects were included into the study if they had a diagnosis of depression without other confounding medical or psychiatric diagnoses or treatments. All patients were followed weekly and assessed for changes in the Hamilton rating scales for anxiety (HAM-A) and depression (HAM-D). Inclusion criteria in the study included a HAM-D of 18 or higher. Because CRHR1 affects both depression and anxiety. Patients were classified into a high-anxiety (HA) group if their HAM-A score was 18 or higher and in a low-anxiety (LA) group if their HAM-A score was less than 18. Utilizing the haplotype-tag single-nucleotide polymorphisms rs1876828, rs242939 and rs242941, we tested for haplotypic association between CRHR1 and 8-week response to daily antidepressant treatment. In the HA group (n=54), homozygosity for the GAG haplotype was associated with a relative 70% greater reduction in HAM-A scores compared to heterozygous (63.1±4.5 vs 37.1±6.9%, respectively, P=0.002). For HAM-D, GAG haplotype homozygosity was associated with a 31% greater reduction in scores after treatment compared to heterozygous (67.3±4.3 vs 51.2±6.0%, respectively, P=0.03). In those with lower-anxiety levels at screening, there were no associations between CRHR1 genotype and percent change in HAM-A or HAM-D. These findings of increased response to antidepressants in highly anxious patients homozygous for the GAG haplotype of CRHR1 need to be independently validated and replicated. Such work would support the hypotheses that response to antidepressant treatment is heterogeneous and that the CRHR1 gene and possibly other genes in stress-inflammatory pathways are involved in response to antidepressant treatment. These findings also suggest that variations in the CRHR1 gene may affect response to CRHR1 agonists or antagonists. All data are deposited in www.pharmgkb.org.


American Journal of Respiratory Cell and Molecular Biology | 2011

Thymic Stromal Lymphopoietin Gene Promoter Polymorphisms Are Associated with Susceptibility to Bronchial Asthma

Michishige Harada; Tomomitsu Hirota; Aya I. Jodo; Yuki Hitomi; Masafumi Sakashita; Tatsuhiko Tsunoda; Takehiko Miyagawa; Satoru Doi; Makoto Kameda; Kimie Fujita; Akihiko Miyatake; Tadao Enomoto; Hironori Masuko; Tohru Sakamoto; Nobuyuki Hizawa; Yoichi Suzuki; Shigemi Yoshihara; Mitsuru Adachi; Hirohisa Saito; Kenji Matsumoto; Toshiharu Nakajima; Rasika A. Mathias; Nicholas Rafaels; Kathleen C. Barnes; Blanca E. Himes; Qing Ling Duan; Kelan G. Tantisira; Scott T. Weiss; Yusuke Nakamura; Steven F. Ziegler

Thymic stromal lymphopoietin (TSLP) triggers dendritic cell--mediated T helper (Th) 2 inflammatory responses. A single-nucleotide polymorphism (SNP), rs3806933, in the promoter region of the TSLP gene creates a binding site for the transcription factor activating protein (AP)-1. The variant enhances AP-1 binding to the regulatory element, and increases the promoter--reporter activity of TSLP in response to polyinosinic-polycytidylic acid (poly[I:C]) stimulation in normal human bronchial epithelium (NHBE). We investigated whether polymorphisms including the SNP rs3806933 could affect the susceptibility to and clinical phenotypes of bronchial asthma. We selected three representative (i.e., Tag) SNPs and conducted association studies of the TSLP gene, using two independent populations (639 patients with childhood atopic asthma and 838 control subjects, and 641 patients with adult asthma and 376 control subjects, respectively). We further examined the effects of corticosteroids and a long-acting β(2)-agonist (salmeterol) on the expression levels of the TSLP gene in response to poly(I:C) in NHBE. We found that the promoter polymorphisms rs3806933 and rs2289276 were significantly associated with disease susceptibility in both childhood atopic and adult asthma. The functional SNP rs3806933 was associated with asthma (meta-analysis, P = 0.000056; odds ratio, 1.29; 95% confidence interval, 1.14-1.47). A genotype of rs2289278 was correlated with pulmonary function. Moreover, the induction of TSLP mRNA and protein expression induced by poly(I:C) in NHBE was synergistically impaired by a corticosteroid and salmeterol. TSLP variants are significantly associated with bronchial asthma and pulmonary function. Thus, TSLP may serve as a therapeutic target molecule for combination therapy.


The New England Journal of Medicine | 2016

Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.

Michael J. McGeachie; Katherine P. Yates; Xiaobo Zhou; Feng Guo; Alice L. Sternberg; Mark L. Van Natta; Robert A. Wise; Stanley J. Szefler; Sunita Sharma; Alvin T. Kho; Michael H. Cho; Damien C. Croteau-Chonka; Peter J. Castaldi; Gaurav Jain; Amartya Sanyal; Ye Zhan; Bryan R. Lajoie; Job Dekker; John A. Stamatoyannopoulos; Ronina A. Covar; Robert S. Zeiger; N. Franklin Adkinson; Paul T. Williams; H. William Kelly; Hartmut Grasemann; Judith M. Vonk; Gerard H. Koppelman; Dirkje S. Postma; Benjamin A. Raby; Isaac Houston

BACKGROUND Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. METHODS We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. RESULTS Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). CONCLUSIONS Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).


Pharmacological Reviews | 2009

Pharmacogenomic discovery using cell-based models.

Marleen Welsh; Lara M. Mangravite; Marisa W. Medina; Kelan G. Tantisira; Wei Zhang; R. Stephanie Huang; Howard L. McLeod; M. Eileen Dolan

Quantitative variation in response to drugs in human populations is multifactorial; genetic factors probably contribute to a significant extent. Identification of the genetic contribution to drug response typically comes from clinical observations and use of classic genetic tools. These clinical studies are limited by our inability to control environmental factors in vivo and the difficulty of manipulating the in vivo system to evaluate biological changes. Recent progress in dissecting genetic contribution to natural variation in drug response through the use of cell lines has been made and is the focus of this review. A general overview of current cell-based models used in pharmacogenomic discovery and validation is included. Discussion includes the current approach to translate findings generated from these cell-based models into the clinical arena and the use of cell lines for functional studies. Specific emphasis is given to recent advances emerging from cell line panels, including the International HapMap Project and the NCI60 cell panel. These panels provide a key resource of publicly available genotypic, expression, and phenotypic data while allowing researchers to generate their own data related to drug treatment to identify genetic variation of interest. Interindividual and interpopulation differences can be evaluated because human lymphoblastoid cell lines are available from major world populations of European, African, Chinese, and Japanese ancestry. The primary focus is recent progress in the pharmacogenomic discovery area through ex vivo models.

Collaboration


Dive into the Kelan G. Tantisira's collaboration.

Top Co-Authors

Avatar

Scott T. Weiss

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Augusto A. Litonjua

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin A. Raby

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvin T. Kho

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jessica Lasky-Su

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunita Sharma

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge