Kelen Freitas
Virginia Commonwealth University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelen Freitas.
Journal of Pharmacology and Experimental Therapeutics | 2013
Kelen Freitas; Carroll Fi; M. I. Damaj
The α7 nicotinic acetylcholine receptor (nAChR) subtype is abundantly expressed in the central nervous system and in the periphery. Recent evidence suggests that α7 nAChR subtypes, which can be activated by an endogenous cholinergic tone, comprising acetylcholine and the α7 nAChR agonist choline, play an important role in subchronic pain and inflammation. This study’s objective was to test whether α7 nAChR positive allosteric modulators (PAMs) produce antinociception in in vivo mouse models of acute and persistent pain. Testing type I [N-(5-chloro-2-hydroxyphenyl)-N′-[2-chloro-5-(trifluoromethyl)phenyl] (NS1738)] and type II [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl) (PNU-120596)] α7 nAChR PAMs in acute and persistent pain, we found that, although neither reduced acute thermal pain, only PNU-120596 dose-dependently attenuated paw-licking behavior in the formalin test. The long-acting effect of PNU-120596 in this test was in discordance with its pharmacokinetic profile in mice, which suggests the involvement of postreceptor signaling mechanisms. Our results with selective mitogen-activated protein kinase kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene monoethanolate (U0126) argues for an important role of extracellular signal-regulated kinase-1/2 pathways activation in PNU-120596’s antinociceptive effects. The α7 antagonist MLA, administered intrathecally, reversed PNU-120596’s effects, confirming PNU-120596’s action, in part, through central α7 nAChRs. Importantly, tolerance to PNU-120596 was not developed after subchronic treatment of the drug. Surprisingly, PNU-120596’s antinociceptive effects were blocked by NS1738. Our results indicate that type II α7 nAChR PAM PNU-120596, but not type I α7 nAChR PAM NS1738, shows significant antinociception effects in persistent pain models in mice.
Neuropsychopharmacology | 2014
Cecilia Bull; Kelen Freitas; Shiping Zou; Ryan S. Poland; Wahab A. Syed; Daniel J. Urban; Sabrina C. Minter; Keith L Shelton; Kurt F. Hauser; S. Stevens Negus; Pamela E. Knapp; M. Scott Bowers
Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior.
Neuropharmacology | 2013
Kelen Freitas; Sudeshna Ghosh; F. Ivy Carroll; Aron H. Lichtman; M. Imad Damaj
Agonists and positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as novel therapeutic approaches for managing cognitive deficits in schizophrenia and Alzheimers disease. Though α7 agonists were recently found to possess antinociceptive and anti-inflammatory properties in rodent models of chronic neuropathic pain and inflammation, the effects of α7 nAChRs PAMs on chronic pain and inflammation remain largely unknown. The present study investigated whether PAMs, by increasing endogenous cholinergic tone, potentiate α7 nAChRs function to attenuate inflammatory and chronic neuropathic pain in mice. We tested two types of PAMS, type I (NS1738) and type II (PNU-120596) in carrageenan-induced inflammatory pain and chronic constriction injury (CCI) neuropathic pain models. We found that both NS1738 and PNU-120596 significantly reduced thermal hyperalgesia, while only PNU-120596 significantly reduced edema caused by a hind paw infusion of carrageenan. Importantly, PNU-120596 reversed established thermal hyperalgesia and edema induced by carrageenan. In the CCI model, PNU-120596 had long-lasting (up to 6 h), dose-dependent anti-hyperalgesic and anti-allodynic effects after a single injection, while NS1738 was inactive. Systemic administration of the α7 nAChR antagonist MLA reversed PNU-120596s effects, suggesting the involvement of central and peripheral α7 nAChRs. Furthermore, PNU-120596 enhanced an ineffective dose of selective agonist PHA-543613 to produce anti-allodynic effects in the CCI model. Our results indicate that the type II α7 nAChRs PAM PNU-120596, but not the type I α7 nAChRs PAM NS1738, shows significant anti-edematous and anti-allodynic effects in inflammatory and CCI pain models in mice.
British Journal of Pharmacology | 2013
Kelen Freitas; Ss Negus; F Carroll; M. I. Damaj
The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU‐120596 induces antinociception on its own and in combination with choline in the formalin pain model.
Science Translational Medicine | 2015
Jeffrey S. Wieskopf; Jayanti Mathur; Walrati Limapichat; Michael R. Post; Mona Alqazzaz; Loren J. Martin; Dmitri V. Zaykin; Shad B. Smith; Kelen Freitas; Jean Sebastien Austin; Feng Dai; Jie Zhang; Jaclyn Marcovitz; Alexander H. Tuttle; Peter Maxwell Slepian; Sarah E Clarke; Ryan M. Drenan; Jeff Janes; Shakir Al Sharari; Samantha K. Segall; Eske Kvanner Aasvang; Weike Lai; Reinhard Bittner; Christopher I. Richards; Gary D. Slade; Henrik Kehlet; John R. Walker; Uwe Maskos; Jean-Pierre Changeux; Marshall Devor
Finding that nicotinic receptors containing the α6 subunit, but not the α4, inhibit chronic pain points to a new set of potential therapeutic drugs. Which receptor underlies chronic pain? Pain, especially of the chronic variety, is not well controlled by current drugs, and recent clinical trials have been unsuccessful. By seeking genes with expression levels that correlate with a chronic pain–like test in mice, Wieskopf et al. show that we may have set our sights on the wrong target. Nicotinic receptors that contain the α6 subunit were highly expressed when chronic pain was low, and genetic experiments confirmed that this subunit is the cause. The α6 subunit was required for analgesia, whereas the α4 subunit—the target of recent drug development efforts—was not. A human genetic study showing that people with a certain allele in the α6 subunit gene are at increased risk of chronic pain lends confidence in the clinical relevance of these results. Chronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)–expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated with neuropathic and inflammatory injuries is significantly altered in α6* mutants, and that α6* but not α4* nicotinic receptors are absolutely required for peripheral and/or spinal nicotine analgesia. Furthermore, we show that Chrna6’s role in analgesia is at least partially due to direct interaction and cross-inhibition of α6* nAChRs with P2X2/3 receptors in DRG nociceptors. Finally, we establish the relevance of our results to humans by the observation of genetic association in patients suffering from chronic postsurgical and temporomandibular pain.
Drug Development Research | 2015
Kelen Freitas; Todd M. Hillhouse; Michael D. Leitl; Steve Negus
Preclinical Research
Journal of Pharmacology and Experimental Therapeutics | 2015
Kelen Freitas; F. Ivy Carroll; S. Stevens Negus
Agonists at nicotinic acetylcholine receptors (nAChRs) constitute one drug class being evaluated as candidate analgesics. Previous preclinical studies have implicated α4β2 and α7 nAChRs as potential mediators of the antinociceptive effects of (–)-nicotine hydrogen tartrate (nicotine) and other nAChR agonists; however, these studies have relied exclusively on measures of pain-stimulated behavior, which can be defined as behaviors that increase in frequency, rate, or intensity after presentation of a noxious stimulus. Pain is also associated with depression of many behaviors, and drug effects can differ in assays of pain-stimulated versus pain-depressed behavior. Accordingly, this study compared the effects of nicotine, the selective α4/6β2 agonist 5-(123I)iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), and the selective α7 agonist N-(3R)-1-azabicyclo(2.2.2)oct-3-yl-4-chlorobenzamide in assays of pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats. Intraperitoneal injection of dilute lactic acid served as an acute noxious stimulus to either stimulate a stretching response or depress the operant responding, which is maintained by electrical brain stimulation in an intracranial self-stimulation (ICSS) procedure. Nicotine produced a dose-dependent, time-dependent, and mecamylamine-reversible blockade of both acid-stimulated stretching and acid-induced depression of ICSS. 5-I-A-85380 also blocked both acid-stimulated stretching and acid-induced depression of ICSS, whereas N-(3R)-1-azabicyclo(2.2.2)oct-3-yl-4-chlorobenzamide produced no effect in either procedure. Both nicotine and 5-I-A-85380 were ≥10-fold more potent in blocking the acid-induced depression of ICSS than in blocking the acid-induced stimulation of stretching. These results suggest that stimulation of α4β2 and/or α6β2 nAChRs may be especially effective to alleviate the signs of pain-related behavioral depression in rats; however, nonselective behavioral effects may contribute to apparent antinociception.
Journal of Pharmacology and Experimental Therapeutics | 2017
Matthew F. Lazenka; Kelen Freitas; Sydney Henck; S. Stevens Negus
Clinically significant pain often includes a decrease in both behavior and mesolimbic dopamine signaling. Indirect and/or direct dopamine receptor agonists may alleviate pain-related behavioral depression. To test this hypothesis, the present study compared effects of indirect and direct dopamine agonists in a preclinical assay of pain-depressed operant responding. Male Sprague-Dawley rats with chronic indwelling microelectrodes in the medial forebrain bundle were trained in an intracranial self-stimulation (ICSS) procedure to press a lever for pulses of electrical brain stimulation. Intraperitoneal injection of dilute lactic acid served as an acute noxious stimulus to depress ICSS. Intraperitoneal lactic acid–induced depression of ICSS was dose-dependently blocked by the dopamine transporter inhibitor methylphenidate and the D1-selective agonist SKF82958, but not by the D2/3-selective agonists quinpirole, pramipexole, or sumanirole. The antinociceptive effects of methylphenidate and SKF82958 were blocked by the D1-selective antagonist SCH39166. Acid-induced stimulation of a stretching response was evaluated in separate groups of rats, but all agonists decreased acid-stimulated stretching, and antagonism experiments were inconclusive due to direct effects of the antagonists when administered alone. Taken together, these results suggest that D1-receptor stimulation is both sufficient to block acid-induced depression of ICSS and necessary for methylphenidate antinociception in this procedure. Conversely, D2/3-receptor stimulation is not sufficient to relieve pain-depressed behavior. These results support the hypothesis that pain-related depression of dopamine D1 receptor signaling contributes to pain-related depression of behavior in rats. Additionally, these results support further consideration of indirect dopamine agonists and direct D1 receptor agonists as candidate treatments for pain-related behavioral depression.
Archive | 2014
M. Imad Damaj; Kelen Freitas; Deniz Bagdas; Pamela Flood
Nicotine and nicotinic receptors have been explored for the past three decades as a strategy for pain control. These receptors are widely expressed throughout the central and peripheral nervous system as well as immune cells. Despite encouraging results with many selective α4β2* agonists in animal models of pain, human studies showed a narrow therapeutic window between analgesic efficacy and toxicity is associated with the use of these agonists as analgesics. α4β2 positive allosteric modulators are being developed with the aim to increase the potency or therapeutic window of these agonists. However, several recent developments have potentially opened new windows of opportunity in the use of nicotinic agents for analgesia. Accumulating evidences suggest that α7 agonists and positive allosteric modulators hold a lot of promise in the treatment of chronic inflammatory pain conditions. In addition, recent animal studies suggest the therapeutic potential of ligands acting at other subtypes of nicotinic receptors. The current review will attempt to highlight these recent developments and outline some important findings that demonstrate further potential for the development of nicotinic ligands as novel analgesics.
Journal of Pharmacology and Experimental Therapeutics | 2018
Megan J. Moerke; Subramaniam Ananthan; Matthew L. Banks; Jose M. Eltit; Kelen Freitas; Amy R. Johnson; Surendra K. Saini; Tyler W.E. Steele; S. Stevens Negus
Drugs that inhibit the dopamine (DA) transporter (DAT) include both therapeutic agents and abused drugs. Recent studies identified a novel series of putative allosteric DAT inhibitors, but the in vivo effects of these compounds are unknown. This study examined the abuse-related behavioral and neurochemical effects produced in rats by SRI-31142 [2-(7-methylimidazo[1,2-a]pyridin-6-yl)-N-(2-phenyl-2-(pyridin-4-yl)ethyl)quinazolin-4-amine], one compound from this series. In behavioral studies, intracranial self-stimulation (ICSS) was used to compare the effects produced by SRI-31142, the abused and nonselective DAT inhibitor cocaine, and the selective DAT inhibitor GBR-12935 [1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine]. In neurochemical studies, in vivo microdialysis was used to compare the effects of SRI-31142 and cocaine on levels of DA and serotonin in nucleus accumbens (NAc). The effects of SRI-31142 in combination with cocaine were also examined in both procedures. In contrast to cocaine and GBR-12935, SRI-31142 failed to produce abuse-related increases in ICSS or NAc DA; instead, SRI-31142 only decreased ICSS and NAc DA at a dose that was also sufficient to block cocaine-induced increases in ICSS and NAc DA. Pharmacokinetic studies suggested low but adequate brain penetration of SRI-31142, in vitro binding studies failed to identify likely non-DAT targets, and in vitro functional assays failed to confirm DA uptake inhibition in an assay of DAT-mediated fluorescent signals in live cells. These results indicate that SRI-31142 does not produce cocaine-like abuse-related effects in rats. SRI-31142 may have utility to block cocaine effects and may warrant further study as a candidate pharmacotherapy; however, the role of DAT in mediating these effects is unclear, and side effects may be a limiting factor.