Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keli Agama is active.

Publication


Featured researches published by Keli Agama.


Progress in Nucleic Acid Research and Molecular Biology | 2006

Repair of Topoisomerase I-Mediated DNA Damage

Yves Pommier; Juana M. Barceló; V. Ashutosh Rao; Olivier Sordet; Andrew Jobson; Laurent Thibaut; Ze-Hong Miao; Jennifer A. Seiler; Hongliang Zhang; Christophe Marchand; Keli Agama; John L. Nitiss; Christophe E. Redon

Publisher Summary This chapter discusses the use of inhibitors of tyrosyl-DNA phosphodiesterase (Tdp1) and Chk1/2 in combination with Topoisomerase I (TopI) inhibitors. TopI is an abundant and essential enzyme. It is the selective target of camptothecins, which are effective anticancer agents. TopI–DNA cleavage complexes can also be trapped by various endogenous and exogenous DNA lesions, including mismatches, abasic sites, and carcinogenic adducts. Tdp1 is one of the repair enzymes for Top1–DNA covalent complexes. It forms a multiprotein complex that includes poly (Adenosine diphosphate (ADP)–ribose) polymerase (PARP). PARP-deficient cells are hypersensitive to camptothecins and functionally deficient for Tdp1. This chapter reviews the developments in several pathways involved in the repair of Top1 cleavage complexes and the role of Chk1 and Chk2 checkpoint kinases in the cellular responses to Top1 inhibitors. The genes conferring camptothecin hypersensitivity are compiled for humans, budding yeast, and fission yeast.


Cancer Research | 2007

Novel Indenoisoquinolines NSC 725776 and NSC 724998 Produce Persistent Topoisomerase I Cleavage Complexes and Overcome Multidrug Resistance

Smitha Antony; Keli Agama; Ze-Hong Miao; Kazutaka Takagi; Mollie H. Wright; Ana I. Robles; Lyuba Varticovski; Muthukaman Nagarajan; Andrew Morrell; Mark Cushman; Yves Pommier

Camptothecin (CPT) derivatives are effective anticancer drugs, especially against solid tumors. As CPTs are chemically unstable and have clinical limitations, we have synthesized indenoisoquinolines as novel topoisomerase I (Top1) inhibitors. We presently report two indenoisoquinoline derivatives, NSC 725776 and NSC 724998, which have been selected for therapeutic development. Both are potent Top1 inhibitors and induce Top1 cleavage at unique genomic positions compared with CPT. Consistent with Top1 poisoning, protein-linked DNA breaks were detected in cells treated with NSC 725776 and NSC 724998 at nanomolar concentrations. Those drug-induced protein-linked DNA breaks persisted longer after drug removal than those produced by CPT. Studies in human cells in culture show that NSC 725776 and NSC 724998 exert antiproliferative activity at submicromolar concentrations. Furthermore, NSC 725776 and NSC 724998 show cross-resistance in cells deficient or silenced for Top1, which is consistent with their selective Top1 targeting. Similar to other known Top1 inhibitors, NSC 725776-treated and NSC 724998-treated cells show an arrest of cell cycle progression in both S and G(2)-M and a dependence on functional p53 for their cytotoxicity. Dose-dependent gamma-H2AX foci formation was readily observed in cells treated with NSC 725776 and NSC 724998. These gamma-H2AX foci were detectable at pharmacologically relevant doses for up to 24 h and thus could be used as biomarkers for clinical trials (phase 0).


Nucleic Acids Research | 2011

Poly(ADP-ribose) polymerase and XPF–ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells

Yong-Wei Zhang; Marie Regairaz; Jennifer A. Seiler; Keli Agama; James H. Doroshow; Yves Pommier

Poly(ADP-Ribose) (PAR) polymerase (PARP) inhibitors represent a promising class of novel anticancer agents. The present study explores the molecular rationale for combining veliparib (ABT-888) with camptothecin (CPT) and its clinical derivatives, topotecan and irinotecan. ABT-888 inhibited PAR induction by CPT and increased CPT-induced cell killing and histone γH2AX. Increased DNA breaks by ABT-888 were not associated with a corresponding increase of topoisomerase I cleavage complexes and were further increased by inactivation of tyrosyl-DNA phosphodiesterase 1. SiRNA knockdown for the endonuclease XPF–ERCC1 reduced the ABT-888-induced γH2AX response in non-replicating and replicating cells but enhanced the antiproliferative effect of ABT-888 in CPT-treated cells. Our findings indicate the involvement of XPF–ERCC1 in inducing γH2AX response and repairing topoisomerase I-induced DNA damage as an alternative pathway from PARP and tyrosyl-DNA phosphodiesterase 1.


PLOS Genetics | 2010

Collaborative Action of Brca1 and CtIP in Elimination of Covalent Modifications from Double-Strand Breaks to Facilitate Subsequent Break Repair

Kyoko Nakamura; Toshiaki Kogame; Hiroyuki Oshiumi; Akira Shinohara; Yoshiki Sumitomo; Keli Agama; Yves Pommier; Kimiko Tsutsui; Ken Tsutsui; Edgar Hartsuiker; Tomoo Ogi; Shunichi Takeda; Yoshihito Taniguchi

Topoisomerase inhibitors such as camptothecin and etoposide are used as anti-cancer drugs and induce double-strand breaks (DSBs) in genomic DNA in cycling cells. These DSBs are often covalently bound with polypeptides at the 3′ and 5′ ends. Such modifications must be eliminated before DSB repair can take place, but it remains elusive which nucleases are involved in this process. Previous studies show that CtIP plays a critical role in the generation of 3′ single-strand overhang at “clean” DSBs, thus initiating homologous recombination (HR)–dependent DSB repair. To analyze the function of CtIP in detail, we conditionally disrupted the CtIP gene in the chicken DT40 cell line. We found that CtIP is essential for cellular proliferation as well as for the formation of 3′ single-strand overhang, similar to what is observed in DT40 cells deficient in the Mre11/Rad50/Nbs1 complex. We also generated DT40 cell line harboring CtIP with an alanine substitution at residue Ser332, which is required for interaction with BRCA1. Although the resulting CtIPS332A/−/− cells exhibited accumulation of RPA and Rad51 upon DNA damage, and were proficient in HR, they showed a marked hypersensitivity to camptothecin and etoposide in comparison with CtIP+/−/− cells. Finally, CtIPS332A/−/−BRCA1−/− and CtIP+/−/−BRCA1−/− showed similar sensitivities to these reagents. Taken together, our data indicate that, in addition to its function in HR, CtIP plays a role in cellular tolerance to topoisomerase inhibitors. We propose that the BRCA1-CtIP complex plays a role in the nuclease-mediated elimination of oligonucleotides covalently bound to polypeptides from DSBs, thereby facilitating subsequent DSB repair.


Cancer Research | 2009

The Iron Chelator Dp44mT Causes DNA Damage and Selective Inhibition of Topoisomerase IIα in Breast Cancer Cells

V. Ashutosh Rao; Sarah R. Klein; Keli Agama; Eriko Toyoda; Noritaka Adachi; Yves Pommier; Emily Shacter

Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) is being developed as an iron chelator with selective anticancer activity. We investigated the mechanism whereby Dp44mT kills breast cancer cells, both as a single agent and in combination with doxorubicin. Dp44mT alone induced selective cell killing in the breast cancer cell line MDA-MB-231 when compared with healthy mammary epithelial cells (MCF-12A). It induces G(1) cell cycle arrest and reduces cancer cell clonogenic growth at nanomolar concentrations. Dp44mT, but not the iron chelator desferal, induces DNA double-strand breaks quantified as S139 phosphorylated histone foci (gamma-H2AX) and Comet tails induced in MDA-MB-231 cells. Doxorubicin-induced cytotoxicity and DNA damage were both enhanced significantly in the presence of low concentrations of Dp44mT. The chelator caused selective poisoning of DNA topoisomerase IIalpha (top2alpha) as measured by an in vitro DNA cleavage assay and cellular topoisomerase-DNA complex formation. Heterozygous Nalm-6 top2alpha knockout cells (top2alpha(+/-)) were partially resistant to Dp44mT-induced cytotoxicity compared with isogenic top2alpha(+/+) or top2beta(-/-) cells. Specificity for top2alpha was confirmed using top2alpha and top2beta small interfering RNA knockdown in HeLa cells. The results show that Dp44mT is cytotoxic to breast cancer cells, at least in part, due to selective inhibition of top2alpha. Thus, Dp44mT may serve as a mechanistically unique treatment for cancer due to its dual ability to chelate iron and inhibit top2alpha activity.


Molecular Cancer Therapeutics | 2009

Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity

Thomas D. Pfister; William C. Reinhold; Keli Agama; Shalu Gupta; Sonny Khin; Robert J. Kinders; Ralph E. Parchment; Joseph E. Tomaszewski; James H. Doroshow; Yves Pommier

Topoisomerase I (Top1) is a proven target for cancer therapeutics, and the level of Top1 in tumors has been used as a biomarker for chemotherapeutic efficacy. In this study, we report the development and validation of a two-site enzyme chemiluminescent immunoassay for Top1, which we used to measure Top1 levels in the NCI-60 cancer cell line panel. Top1 levels ranged from 0.9 to 9.8 ng/mL/μg protein extract in these cell lines. Levels varied both within and between cancer types but were generally highest in colon cancer and leukemia cell lines and lowest in central nervous system and renal cancer cell lines. Top1 mRNA levels in the NCI-60 cell lines were also measured by microarray; mRNA values generally showed a good correlation with protein levels (Pearson correlation = 0.8). When these expression levels were compared with the activity of the indenoisoquinoline class of Top1 inhibitors across the NCI-60 cell panel, low levels of Top1 were associated with increased resistance to these drugs. The results of our studies indicate that our Top1 assay can be used to quantify Top1 levels in untreated cells as well as cells treated with Top1 inhibitors and that the assay has the potential to be adapted for use in predicting clinical response to Top1-active antineoplastic agents. [Mol Cancer Ther 2009;8(7):1878–84]


Journal of Cell Biology | 2011

Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I–DNA complexes

Marie Regairaz; Yong-Wei Zhang; Haiqing Fu; Keli Agama; Nalini Tata; Surbhi Agrawal; Mirit I. Aladjem; Yves Pommier

Replication forks stalled by excess DNA supercoiling can be resolved by DNA cleavage by the Mus81 endonuclease.


Nucleic Acids Research | 2007

Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1

Smitha Antony; Christophe Marchand; Andrew G. Stephen; Laurent Thibaut; Keli Agama; Robert J. Fisher; Yves Pommier

By enzymatically hydrolyzing the terminal phosphodiester bond at the 3′-ends of DNA breaks, tyrosyl-DNA phosphodiesterase (Tdp1) repairs topoisomerase-DNA covalent complexes and processes the DNA ends for DNA repair. To identify novel Tdp1 inhibitors, we developed a high-throughput assay that uses electrochemiluminescent (ECL) substrates. Subsequent to screening of 1981 compounds from the ‘diversity set’ of the NCI-Developmental Therapeutics Program, here we report that furamidine inhibits Tdp1 at low micromolar concentrations. Inhibition of Tdp1 by furamidine is effective both with single- and double-stranded substrates but is slightly stronger with the duplex DNA. Surface plasmon resonance studies show that furamidine binds both single- and double-stranded DNA, though more weakly with the single-stranded substrate DNA. Thus, the inhibition of Tdp1 activity could in part be due to the binding of furamidine to DNA. However, the inhibition of Tdp1 by furamidine is independent of the substrate DNA sequence. The kinetics of Tdp1 inhibition by furamidine was influenced by the drug to enzyme ratio and duration of the reaction. Comparison with related dications shows that furamidine inhibits Tdp1 more effectively than berenil, while pentamidine was inactive. Thus, furamidine represents the most potent Tdp1 inhibitor reported to date.


The EMBO Journal | 2010

Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication

Dongyi Xu; Parameswary A. Muniandy; Elisabetta Leo; Jinhu Yin; Saravanabhavan Thangavel; Xi Shen; Miki; Keli Agama; Rong Guo; David Fox; Amom Ruhikanta Meetei; Lauren E. Wilson; Huy Nguyen; Nan Ping Weng; Steven J. Brill; Lei Li; Alessandro Vindigni; Yves Pommier; Michael M. Seidman; Weidong Wang

BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C‐terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM‐deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA‐binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA‐binding interface for the BLM complex to restart stalled replication forks.


Journal of Medicinal Chemistry | 2012

Synthesis and Biological Evaluation of the First Dual Tyrosyl- DNA Phosphodiesterase I (Tdp1) - Topoisomerase I (Top1) Inhibitors

Trung Xuan Nguyen; Andrew Morrell; Martin Conda-Sheridan; Christophe Marchand; Keli Agama; Alun Bermingam; Andrew G. Stephen; Adel Chergui; Alena Naumova; Robert J. Fisher; Barry R. O’Keefe; Yves Pommier; Mark Cushman

Substances with dual tyrosyl-DNA phosphodiesterase I-topoisomerase I inhibitory activity in one low molecular weight compound would constitute a unique class of anticancer agents that could potentially have significant advantages over drugs that work against the individual enzymes. The present study demonstrates the successful synthesis and evaluation of the first dual Top1-Tdp1 inhibitors, which are based on the indenoisoquinoline chemotype. One bis(indenoisoquinoline) had significant activity against human Tdp1 (IC(50) = 1.52 ± 0.05 μM), and it was also equipotent to camptothecin as a Top1 inhibitor. Significant insights into enzyme-drug interactions were gained via structure-activity relationship studies of the series. The present results also document the failure of the previously reported sulfonyl ester pharmacophore to confer Tdp1 inhibition in this indenoisoquinoline class of inhibitors even though it was demonstrated to work well for the steroid NSC 88915 (7). The current study will facilitate future efforts to optimize dual Top1-Tdp1 inhibitors.

Collaboration


Dive into the Keli Agama's collaboration.

Top Co-Authors

Avatar

Yves Pommier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Smitha Antony

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Marchand

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

James H. Doroshow

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongliang Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge