Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly A. Brayton is active.

Publication


Featured researches published by Kelly A. Brayton.


PLOS Pathogens | 2007

Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa

Kelly A. Brayton; Audrey O.T. Lau; David R. Herndon; Linda I. Hannick; Lowell S. Kappmeyer; Shawn J. Berens; Shelby Bidwell; Wendy C. Brown; Jonathan Crabtree; Doug Fadrosh; Tamara Feldblum; Heather A. Forberger; Brian J. Haas; Jeanne M. Howell; Hoda Khouri; Hean Koo; David J. Mann; Junzo Norimine; Ian T. Paulsen; Diana Radune; Qinghu Ren; R. K. W. Smith; Carlos E. Suarez; Owen White; Jennifer R. Wortman; Donald P. Knowles; Terry F. McElwain; Vishvanath Nene

Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ∼150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Efficient use of a small genome to generate antigenic diversity in tick-borne ehrlichial pathogens

Kelly A. Brayton; Donald P. Knowles; Travis C. McGuire; Guy H. Palmer

Ehrlichiae are responsible for important tick-transmitted diseases, including anaplasmosis, the most prevalent tick-borne infection of livestock worldwide, and the emerging human diseases monocytic and granulocytic ehrlichiosis. Antigenic variation of major surface proteins is a key feature of these pathogens that allows persistence in the mammalian host, a requisite for subsequent tick transmission. In Anaplasma marginale pseudogenes for two antigenically variable gene families, msp2 and msp3, appear in concert. These pseudogenes can be recombined into the functional expression site to generate new antigenic variants. Coordinated control of the recombination of these genes would allow these two gene families to act synergistically to evade the host immune response.


Molecular Microbiology | 2002

Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion

Kelly A. Brayton; Guy H. Palmer; Anna M. Lundgren; Jooyoung Yi; Anthony F. Barbet

The rickettsial pathogen Anaplasma marginale establishes lifelong persistent infection in the mammalian reservoir host, during which time immune escape variants continually arise in part because of variation in the expressed copy of the immunodominant outer membrane protein MSP2. A key question is how the small 1.2 Mb A. marginale genome generates sufficient variants to allow long‐term persistence in an immunocompetent reservoir host. The recombination of whole pseudogenes into the single msp2 expression site has been previously identified as one method of generating variants, but is inadequate to generate the number of variants required for persistent infection. In the present study, we demonstrate that recombination of a whole pseudogene is followed by a second level of variation in which small segments of pseudogenes recombine into the expression site by gene conversion. Evidence for four short sequential changes in the hypervariable region of msp2 coupled with the identification of nine pseudogenes from a single strain of A. marginale provides for a combinatorial number of possible expressed MSP2 variants sufficient for lifelong persistence.


Infection and Immunity | 2005

Identification of Novel Antigenic Proteins in a Complex Anaplasma marginale Outer Membrane Immunogen by Mass Spectrometry and Genomic Mapping

Job E. Lopez; William F. Siems; Guy H. Palmer; Kelly A. Brayton; Travis C. McGuire; Junzo Norimine; Wendy C. Brown

ABSTRACT Immunization with purified Anaplasma marginale outer membranes induces complete protection against infection that is associated with CD4+ T-lymphocyte-mediated gamma interferon secretion and immunoglobulin G2 (IgG2) antibody titers. However, knowledge of the composition of the outer membrane immunogen is limited. Recent sequencing and annotation of the A. marginale genome predicts at least 62 outer membrane proteins (OMP), enabling a proteomic and genomic approach for identification of novel OMP by use of IgG serum antibody from outer membrane vaccinates. Outer membrane proteins were separated by two-dimensional electrophoresis, and proteins recognized by total IgG and IgG2 in immune sera of outer membrane-vaccinated cattle were detected by immunoblotting. Immunoreactive protein spots were excised and subjected to liquid chromatography-tandem mass spectrometry. A database search of the A. marginale genome identified 24 antigenic proteins that were predicted to be outer membrane, inner membrane, or membrane-associated proteins. These included the previously characterized surface-exposed outer membrane proteins MSP2, operon associated gene 2 (OpAG2), MSP3, and MSP5 as well as recently identified appendage-associated proteins. Among the 21 newly described antigenic proteins, 14 are annotated in the A. marginale genome and include type IV secretion system proteins, elongation factor Tu, and members of the MSP2 superfamily. The identification of these novel antigenic proteins markedly expands current understanding of the composition of the protective immunogen and provides new candidates for vaccine development.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Superinfection as a driver of genomic diversification in antigenically variant pathogens

James E. Futse; Kelly A. Brayton; Michael J. Dark; Donald P. Knowles; Guy H. Palmer

A new pathogen strain can penetrate an immune host population only if it can escape immunity generated against the original strain. This model is best understood with influenza viruses, in which genetic drift creates antigenically distinct strains that can spread through host populations despite the presence of immunity against previous strains. Whether this selection model for new strains applies to complex pathogens responsible for endemic persistent infections, such as anaplasmosis, relapsing fever, and sleeping sickness, remains untested. These complex pathogens undergo rapid within-host antigenic variation by using sets of chromosomally encoded variants. Consequently, immunity is developed against a large repertoire of variants, dramatically changing the scope of genetic change needed for a new strain to evade existing immunity and establish coexisting infection, termed strain superinfection. Here, we show that the diversity in the alleles encoding antigenic variants between strains of a highly antigenically variant pathogen was equal to the diversity within strains, reflecting equivalent selection for variants to overcome immunity at the host population level as within an individual host. This diversity among strains resulted in expression of nonoverlapping variants that allowed a new strain to evade immunity and establish superinfection. Furthermore, we demonstrated that a single distinct allele allows strain superinfection. These results indicate that there is strong selective pressure to increase the diversity of the variant repertoire beyond what is needed for persistence within an individual host and provide an explanation, competition at the host population level, for the large genomic commitment to variant gene families in persistent pathogens.


Infection and Immunity | 2010

Phylogenomics reveals a diverse Rickettsiales type IV secretion system.

Joseph J. Gillespie; Kelly A. Brayton; Kelly P. Williams; Marco A. Quevedo Diaz; Wendy C. Brown; Abdu F. Azad; Bruno W. S. Sobral

ABSTRACT With an obligate intracellular lifestyle, Alphaproteobacteria of the order Rickettsiales have inextricably coevolved with their various eukaryotic hosts, resulting in small, reductive genomes and strict dependency on host resources. Unsurprisingly, large portions of Rickettsiales genomes encode proteins involved in transport and secretion. One particular transporter that has garnered recent attention from researchers is the type IV secretion system (T4SS). Homologous to the well-studied archetypal vir T4SS of Agrobacterium tumefaciens, the Rickettsialesvirhomolog (rvh) T4SS is characterized primarily by duplication of several of its genes and scattered genomic distribution of all components in several conserved islets. Phylogeny estimation suggests a single event of ancestral acquirement of the rvh T4SS, likely from a nonalphaproteobacterial origin. Bioinformatics analysis of over 30 Rickettsiales genome sequences illustrates a conserved core rvh scaffold (lacking only a virB5 homolog), with lineage-specific diversification of several components (rvhB1, rvhB2, and rvhB9b), likely a result of modifications to cell envelope structure. This coevolution of the rvh T4SS and cell envelope morphology is probably driven by adaptations to various host cells, identifying the transporter as an important target for vaccine development. Despite the genetic intractability of Rickettsiales, recent advancements have been made in the characterization of several components of the rvh T4SS, as well as its putative regulators and substrates. While current data favor a role in effector translocation, functions in DNA uptake and release and/or conjugation cannot at present be ruled out, especially considering that a mechanism for plasmid transfer in Rickettsia spp. has yet to be proposed.


Infection and Immunity | 2007

Immunogenicity of Anaplasma marginale Type IV Secretion System Proteins in a Protective Outer Membrane Vaccine

Job E. Lopez; Guy H. Palmer; Kelly A. Brayton; Michael J. Dark; Stephanie E. Leach; Wendy C. Brown

ABSTRACT Rickettsial pathogens in the genera Anaplasma and Ehrlichia cause acute infection in immunologically naive hosts and are major causes of tick-borne disease in animals and humans. Immunization with purified outer membranes induces protection against acute Anaplasma marginale infection and disease, and a proteomic and genomic approach recently identified 21 proteins within the outer membrane immunogen in addition to the well-characterized major surface proteins MSP1 to MSP5. Among the newly described proteins were the type IV secretion system (TFSS) proteins VirB9, VirB10, and conjugal transfer protein (CTP). In other gram-negative bacteria, TFSS proteins form channels, facilitate secretion of molecules, and are required for intracellular survival. However, TFSS proteins have not been explored as vaccine antigens. In this study we demonstrate that in Anaplasma marginale outer membrane-vaccinated cattle, VirB9, VirB10, and CTP are recognized by serum immunoglobulin G2 (IgG2) and stimulate memory T-lymphocyte proliferation and gamma interferon secretion. VirB9 induced the greatest proliferation in CD4+ T-cell lines, and VirB9-specific CD4+ T-cell clones responded to three A. marginale strains, confirming the VirB9-specific T-cell responses are directed against epitopes in the native protein. The three TFSS proteins are highly conserved with orthologous proteins in Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Ehrlichia canis. Recognition of TFSS antigens by CD4+ T cells and by IgG2 from cattle immunized with the protective outer membrane fraction provides a rationale for including these proteins in development of vaccines against A. marginale and related pathogens.


Infection and Immunity | 2008

Composition of the Surface Proteome of Anaplasma marginale and Its Role in Protective Immunity Induced by Outer Membrane Immunization

Susan M. Noh; Kelly A. Brayton; Wendy C. Brown; Junzo Norimine; Gerhard R. Munske; Christine Davitt; Guy H. Palmer

ABSTRACT Surface proteins of tick-borne, intracellular bacterial pathogens mediate functions essential for invasion and colonization. Consequently, the surface proteome of these organisms is specifically relevant from two biological perspectives, induction of protective immunity in the mammalian host and understanding the transition from the mammalian host to the tick vector. In this study, the surface proteome of Anaplasma marginale, a tick-transmitted bacterial pathogen, was targeted by using surface-specific cross-linking to form intermolecular bonds between adjacent proteins. Liquid chromatography and tandem mass spectroscopy were then employed to characterize the specific protein composition of the resulting complexes. The surface complexes of A. marginale isolated from erythrocytes of the mammalian host were composed of multiple membrane proteins, most of which belong to a protein family, pfam01617, which is conserved among bacteria in the genus Anaplasma and the closely related genus Ehrlichia. In contrast, the surface proteome of A. marginale isolated from tick cells was much less complex and contained a novel protein, AM778, not identified within the surface proteome of organisms from the mammalian host. Immunization using the cross-linked surface complex induced protection against high-level bacteremia and anemia upon A. marginale challenge of cattle and effectively recapitulated the protection induced by immunization with whole outer membranes. These results indicate that a surface protein subset of the outer membrane is capable of inducing protective immunity and serves to direct vaccine development. Furthermore, the data support that remodeling of the surface proteome accompanies the transition between mammalian and arthropod hosts and identify novel targets for blocking transmission.


Molecular Microbiology | 2003

Conservation of a gene conversion mechanism in two distantly related paralogues of Anaplasma marginale.

Patrick F. M. Meeus; Kelly A. Brayton; Guy H. Palmer; Anthony F. Barbet

Anaplasmataceae, the causative agents of anaplasmosis and ehrlichiosis, persist in the bloodstream of their mammalian hosts, allowing acquisition and transmission by tick vectors. Anaplasma marginale establishes persistent infection characterized by sequential cycles of rickettsaemia in which new antigenic variants emerge. The two most immunodominant outer membrane proteins, MSP2 and MSP3, are paralogues, each encoded by a distinct family of related genes. This study demonstrates that, although the two gene families have diverged substantially, each has maintained a similar mechanism to generate structurally and antigenically polymorphic surface antigens. Like MSP2, MSP3 is expressed from a single locus in which variation of the expressed msp3 gene is generated by recombination using msp3 pseudogenes. Each of the msp3 pseudogenes encodes a unique central variable region (CVR) flanked by conserved 5′ and 3′ regions. Changes in the CVR of the expressed msp3, concomitant with invariance of the pseudogenes, indicate that expression site variation is generated using gene conversion. A. marginale thus maintains two large, separate systems within its small genome to generate antigenic variation of its surface proteins, while analogous structural elements indicate a common mechanism.


Molecular Microbiology | 2005

Structural basis for segmental gene conversion in generation of Anaplasma marginale outer membrane protein variants

James E. Futse; Kelly A. Brayton; Donald P. Knowles; Guy H. Palmer

Bacterial pathogens in the genus Anaplasma generate surface coat variants by gene conversion of chromosomal pseudogenes into single‐expression sites. These pseudogenes encode unique surface‐exposed hypervariable regions flanked by conserved domains, which are identical to the expression site flanking domains. In addition, Anaplasma marginale generates variants by recombination of oligonucleotide segments derived from the pseudogenes into the existing expression site copy, resulting in a combinatorial increase in variant diversity. Using the A. marginale genome sequence to track the origin of sequences recombined into the msp2 expression site, we demonstrated that the complexity of the expressed msp2 increases during infection, reflecting a shift from recombination of the complete hypervariable region of a given pseudogene to complex mosaics with segments derived from hypervariable regions of different pseudogenes. Examination of the complete set of 1183 variants with segmental changes revealed that 99% could be explained by one of the recombination sites occurring in the conserved flanking domains and the other within the hypervariable region. Consequently, we propose an ‘anchoring’ model for segmental gene conversion whereby the conserved flanking sequences tightly align and anchor the expression site sequence to the pseudogene. Associated with the recombination sites were deletions, insertions and substitutions; however, these are a relatively minor contribution to variant generation as these occurred in less than 2% of the variants. Importantly, the anchoring model, which can account for more variants than a strict segmental sequence identity mechanism, is consistent with the number of msp2 variants predicted and empirically identified during persistent infection.

Collaboration


Dive into the Kelly A. Brayton's collaboration.

Top Co-Authors

Avatar

Guy H. Palmer

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Wendy C. Brown

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Donald P. Knowles

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan M. Noh

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Glen A. Scoles

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Junzo Norimine

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Massaro W. Ueti

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Shira L. Broschat

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge