Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly Ahern is active.

Publication


Featured researches published by Kelly Ahern.


Journal of Clinical Investigation | 2011

mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice

Chen Zhao; Douglas Yasumura; Xiyan Li; Michael T. Matthes; Marcia Lloyd; Gregory Nielsen; Kelly Ahern; Michael Snyder; Dean Bok; Joshua L. Dunaief; Matthew M. LaVail; Douglas Vollrath

Retinal pigment epithelial (RPE) cell dysfunction plays a central role in various retinal degenerative diseases, but knowledge is limited regarding the pathways responsible for adult RPE stress responses in vivo. RPE mitochondrial dysfunction has been implicated in the pathogenesis of several forms of retinal degeneration. Here we have shown that postnatal ablation of RPE mitochondrial oxidative phosphorylation in mice triggers gradual epithelium dedifferentiation, typified by reduction of RPE-characteristic proteins and cellular hypertrophy. The electrical response of the retina to light decreased and photoreceptors eventually degenerated. Abnormal RPE cell behavior was associated with increased glycolysis and activation of, and dependence upon, the hepatocyte growth factor/met proto-oncogene pathway. RPE dedifferentiation and hypertrophy arose through stimulation of the AKT/mammalian target of rapamycin (AKT/mTOR) pathway. Administration of an oxidant to wild-type mice also caused RPE dedifferentiation and mTOR activation. Importantly, treatment with the mTOR inhibitor rapamycin blunted key aspects of dedifferentiation and preserved photoreceptor function for both insults. These results reveal an in vivo response of the mature RPE to diverse stressors that prolongs RPE cell survival at the expense of epithelial attributes and photoreceptor function. Our findings provide a rationale for mTOR pathway inhibition as a therapeutic strategy for retinal degenerative diseases involving RPE stress.


Investigative Ophthalmology & Visual Science | 2012

Induction of Endoplasmic Reticulum Stress Genes, BiP and Chop, in Genetic and Environmental Models of Retinal Degeneration

Heike Kroeger; Carissa Messah; Kelly Ahern; Jason Gee; Victory Joseph; Michael T. Matthes; Douglas Yasumura; Marina S. Gorbatyuk; Wei-Chieh Chiang; Matthew M. LaVail; Jonathan H. Lin

PURPOSE Endoplasmic reticulum (ER) stress has been observed in animal models of retinitis pigmentosa expressing P23H rhodopsin. We compared levels of tightly induced ER stress genes, Binding of immunoglobulin protein (BiP) and CCAAT/enhancer-binding protein homologous protein (Chop), in seven additional models of retinal degeneration arising from genetic or environmental causes. METHODS Retinas from transgenic S334ter rhodopsin (lines 3, 4, and 5) and Royal College of Surgeons (RCS and RCS-p+) rats from postnatal (P) days 10 to 120 were analyzed. In a constant light (CL) model of retinal degeneration, BALB/c mice were exposed to 15,000 lux of CL for 0 to 8 hours. Retinal tissues from three to eight animals per experimental condition were collected for histologic and molecular analyses. RESULTS S334ter animals revealed significant increases in BiP, S334ter-3 (3.3× at P15), S334ter-4 (4× at P60), and S334ter-5 (2.2× at P90), and Chop, S334ter-3 (1.3× at P15), S334ter-4 (1.5× at P30), and S334ter-5 (no change), compared with controls. P23H-3 rats showed significant increase of BiP at P60 (2.3×) and Chop (1.6×). RCS and RCS-p+ rats showed significant increases in BiP at P60 (2.4×) and P20 (1.8×), respectively, but no statistically significant changes in Chop. BALB/c mice showed increases in BiP (1.5×) and Chop (1.3×) after 4 hours of CL. Increased levels of these ER stress markers correlated with photoreceptor cell loss. CONCLUSIONS Our study reveals surprising increases in BiP and to a lesser degree Chop in retinal degenerations arising from diverse causes. We propose that manipulation of ER stress responses may be helpful in treating many environmental and heritable forms of retinal degeneration.


Molecular Therapy | 2012

Stanniocalcin-1 Rescued Photoreceptor Degeneration in Two Rat Models of Inherited Retinal Degeneration

Gavin W. Roddy; Robert H. Rosa; Joo Youn Oh; Joni Ylostalo; Thomas J. Bartosh; Hosoon Choi; Ryang Hwa Lee; Douglas Yasumura; Kelly Ahern; Gregory Nielsen; Michael T. Matthes; Matthew M. LaVail; Darwin J. Prockop

Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD).Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD).


Investigative Ophthalmology & Visual Science | 2012

Discordant Anatomical, Electrophysiological, and Visual Behavioral Profiles of Retinal Degeneration in Rat Models of Retinal Degenerative Disease

Trevor J. McGill; Glen T. Prusky; Robert M. Douglas; Douglas Yasumura; Michael T. Matthes; Robert J. Lowe; Jacque L. Duncan; Haidong Yang; Kelly Ahern; Kate M. Daniello; Byron D. Silver; Matthew M. LaVail

PURPOSE To assess structural, functional, and visual behavioral relationships in mutant rhodopsin transgenic (Tg) rats and to determine whether early optokinetic tracking (OKT) visual experience, known to permanently elevate visual thresholds in normal rats, can enhance vision in rats with photoreceptor degeneration. METHODS Eight lines of pigmented Tg rats and RCS rats were used in this study. OKT thresholds were tested at single ages (1, 2, 3, 4, and 6 months) in naïve groups of rats, or daily in groups that began at eye-opening (P15) or 10 days later (P25). Electroretinogram (ERG) response amplitudes were recorded after OKT testing, and outer nuclear layer (ONL) thickness measurements were then obtained. RESULTS OKT thresholds, when measured at a single time point in naïve Tg lines beginning at P30, did not decline until months after significant photoreceptor loss. Daily testing of Tg lines resulted mostly with OKT thresholds inversely related to photoreceptor degeneration, with rapid degenerations resulting in sustained OKT thresholds for long periods despite the rapid photoreceptor loss. Slower degenerations resulted in rapid decline of thresholds, long before the loss of most photoreceptors, which was even more pronounced when daily testing began at eye opening. This amplified loss of function was not a result of testing-induced damage to the rod or cone photoreceptors, as ERG amplitudes and ONL thicknesses were the same as untested controls. CONCLUSIONS The unexpected lack of correlation of OKT testing with photoreceptor degeneration in the Tg rats emphasizes the need in behavioral therapeutic studies for careful analysis of visual thresholds of experimental animals prior to therapeutic intervention.


Investigative Ophthalmology & Visual Science | 2008

Genetic modifiers of retinal degeneration in the rd3 mouse.

Michael Danciger; Diego Ogando; Haidong Yang; Michael T. Matthes; Nicole Yu; Kelly Ahern; Douglas Yasumura; Robert W. Williams; Matthew M. LaVail

PURPOSE In previous studies of light-induced (LRD) and age-related (ageRD) retinal degeneration (RD) between the BALB/cByJ (BALB) and B6(Cg)-Tyr(c-2J)/J (B6a) albino mouse strains, RD-modifying quantitative trait loci (QTLs) were identified. After breeding BALB- and B6a-rd3/rd3 congenic strains and finding significant differences in RD, an F1 intercross to determine rd3 QTLs that influence this inherited RD was performed. METHODS N10, F2 BALB- and B6a-rd3/rd3 strains were measured for retinal outer nuclear layer (ONL) thickness from 5 to 12 weeks of age. Since 10 weeks showed significant differences in the ONL, F2 progeny from an F1 intercross were measured for ONL thickness. F2 DNAs were genotyped for SNPs by the Center for Inherited Disease Research. Correlation of genotype with phenotype was made with Map Manager QTX. RESULTS One hundred forty-eight SNPs approximately 10 cM apart were typed in the F2 progeny and analyzed. Significant QTLs were identified on chromosomes (Chrs) 17, 8, 14, and 6 (B6a alleles protective) and two on Chr 5 (BALB alleles protective). Suggestive QTLs were found as well. For the strongest QTLs, follow-up SNPs were analyzed to narrow the critical intervals. Additional studies demonstrated that rd3 disease is exacerbated by light but not protected by the absence of rhodopsin regeneration. CONCLUSIONS QTLs were identified that modulate rd3-RD. These overlapped some QTLs from previous ageRD and LRD studies. The presence of some of the same QTLs in several studies suggests partial commonality in RD pathways. Identifying natural gene/alleles that modify RDs opens avenues of study that may lead to therapies for RD diseases.


Advances in Experimental Medicine and Biology | 2012

Ceramide Signaling in Retinal Degeneration

Hui Chen; Julie Thu A. Tran; Richard S. Brush; Anisse Saadi; Abul K. Rahman; Man Yu; Douglas Yasumura; Michael T. Matthes; Kelly Ahern; Haidong Yang; Matthew M. LaVail; Nawajes A. Mandal

Retinal degenerations (RD) are a complex heterogeneous group of diseases in which retinal photoreceptors and the supporting retinal pigment epithelial cells die irreversibly, causing visual loss for millions of people. Mutations on more than 150 genes have been discovered for RD and there are many forms that possess complex etiology involving more than one gene and environmental effect. For years, many have searched for some common intracellular second messenger for these many forms of cell death which could be targeted for therapy. Ceramide is a novel cellular second messenger which signals for apoptosis. Several lines of evidence suggest an integral role of ceramide in photoreceptor apoptosis and cell death. Understanding their role in the pathogenic pathways of retinal degenerative diseases is important for development of targeted therapeutics.


PLOS ONE | 2013

Glutamatergic Neurotransmission from Melanopsin Retinal Ganglion Cells Is Required for Neonatal Photoaversion but Not Adult Pupillary Light Reflex

Anton Delwig; Sriparna Majumdar; Kelly Ahern; Matthew M. LaVail; Robert H. Edwards; Thomas S. Hnasko; David R. Copenhagen

Melanopsin-expressing retinal ganglion cells (mRGCs) in the eye play an important role in many light-activated non-image-forming functions including neonatal photoaversion and the adult pupillary light reflex (PLR). MRGCs rely on glutamate and possibly PACAP (pituitary adenylate cyclase-activating polypeptide) to relay visual signals to the brain. However, the role of these neurotransmitters for individual non-image-forming responses remains poorly understood. To clarify the role of glutamatergic signaling from mRGCs in neonatal aversion to light and in adult PLR, we conditionally deleted vesicular glutamate transporter (VGLUT2) selectively from mRGCs in mice. We found that deletion of VGLUT2 in mRGCs abolished negative phototaxis and light-induced distress vocalizations in neonatal mice, underscoring a necessary role for glutamatergic signaling. In adult mice, loss of VGLUT2 in mRGCs resulted in a slow and an incomplete PLR. We conclude that glutamatergic neurotransmission from mRGCs is required for neonatal photoaversion but is complemented by another non-glutamatergic signaling mechanism for the pupillary light reflex in adult mice. We speculate that this complementary signaling might be due to PACAP neurotransmission from mRGCs.


Advances in Experimental Medicine and Biology | 2016

Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin

Wei-Chieh Chiang; Victory Joseph; Douglas Yasumura; Michael T. Matthes; Alfred S. Lewin; Marina S. Gorbatyuk; Kelly Ahern; Matthew M. LaVail; Jonathan H. Lin

RHO (Rod opsin) encodes a G-protein coupled receptor that is expressed exclusively by rod photoreceptors of the retina and forms the essential photopigment, rhodopsin, when coupled with 11-cis-retinal. Many rod opsin disease -mutations cause rod opsin protein misfolding and trigger endoplasmic reticulum (ER) stress, leading to activation of the Unfolded Protein Response (UPR) signal transduction network. Chop is a transcriptional activator that is induced by ER stress and promotes cell death in response to chronic ER stress. Here, we examined the role of Chop in transgenic mice expressing human P23H rhodopsin (hP23H Rho Tg) that undergo retinal degeneration. With the exception of one time point, we found no significant induction of Chop in these animals and no significant change in retinal degeneration by histology and electrophysiology when hP23H Rho Tg animals were bred into a Chop (-/-) background. Our results indicate that Chop does not play a significant causal role during retinal degeneration in these animals. We suggest that other modules of the ER stress-induced UPR signaling network may be involved photoreceptor disease induced by P23H rhodopsin.


Investigative Ophthalmology & Visual Science | 2012

Endoplasmic Reticulum Stress In Environmental And Genetic Models Of Retinal Degeneration

Jonathan H. Lin; Heike Kroeger; Carissa Messah; Kelly Ahern; Jason Gee; Victory Joseph; Michael T. Matthes; Douglas Yasumura; Marina Gorbatyuk; Matthew M. LaVail


Investigative Ophthalmology & Visual Science | 2009

Chop Expression in Transgenic Animal Models of Retinal Degeneration

Jonathan H. Lin; Jae Suk Kim; Marina S. Gorbatyuk; Kelly Ahern; Michael T. Matthes; Douglas Yasumura; Alfred S. Lewin; Matthew M. LaVail

Collaboration


Dive into the Kelly Ahern's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haidong Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina S. Gorbatyuk

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Victory Joseph

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carissa Messah

University of California

View shared research outputs
Top Co-Authors

Avatar

Diego Ogando

Loyola Marymount University

View shared research outputs
Researchain Logo
Decentralizing Knowledge