Kelly E. Coller
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly E. Coller.
PLOS Pathogens | 2009
Kelly E. Coller; Kristi L. Berger; Nicholas S. Heaton; Jacob D. Cooper; Rosa Yoon; Glenn Randall
Hepatitis C virus (HCV) enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a siRNA library that targets 140 cellular membrane trafficking genes to identify host genes required for infectious HCV production and HCV pseudoparticle entry. This approach identified 16 host cofactors of HCV entry that function primarily in clathrin-mediated endocytosis, including components of the clathrin endocytosis machinery, actin polymerization, receptor internalization and sorting, and endosomal acidification. We next developed single particle tracking analysis of highly infectious fluorescent HCV particles to examine the co-trafficking of HCV virions with cellular cofactors of endocytosis. We observe multiple, sequential interactions of HCV virions with the actin cytoskeleton, including retraction along filopodia, actin nucleation during internalization, and migration of internalized particles along actin stress fibers. HCV co-localizes with clathrin and the ubiquitin ligase c-Cbl prior to internalization. Entering HCV particles are associated with the receptor molecules CD81 and the tight junction protein, claudin-1; however, HCV-claudin-1 interactions were not restricted to Huh-7.5 cell-cell junctions. Surprisingly, HCV internalization generally occurred outside of Huh-7.5 cell-cell junctions, which may reflect the poorly polarized nature of current HCV cell culture models. Following internalization, HCV particles transport with GFP-Rab5a positive endosomes, which is consistent with trafficking to the early endosome. This study presents technical advances for imaging HCV entry, in addition to identifying new host cofactors of HCV infection, some of which may be antiviral targets.
PLOS Pathogens | 2012
Kelly E. Coller; Nicholas S. Heaton; Kristi L. Berger; Jacob D. Cooper; Jessica L. Saunders; Glenn Randall
The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells.
PLOS Pathogens | 2015
M. Berg; Deanna Lee; Kelly E. Coller; Matthew Frankel; Andrew Aronsohn; Kevin Cheng; Kenn Forberg; M. Marcinkus; Samia N. Naccache; George J. Dawson; Catherine A. Brennan; Donald M. Jensen; John Hackett; Charles Y. Chiu
Hepatitis C virus (HCV) and human pegivirus (HPgV), formerly GBV-C, are the only known human viruses in the Hepacivirus and Pegivirus genera, respectively, of the family Flaviviridae. We present the discovery of a second pegivirus, provisionally designated human pegivirus 2 (HPgV-2), by next-generation sequencing of plasma from an HCV-infected patient with multiple bloodborne exposures who died from sepsis of unknown etiology. HPgV-2 is highly divergent, situated on a deep phylogenetic branch in a clade that includes rodent and bat pegiviruses, with which it shares <32% amino acid identity. Molecular and serological tools were developed and validated for high-throughput screening of plasma samples, and a panel of 3 independent serological markers strongly correlated antibody responses with viral RNA positivity (99.9% negative predictive value). Discovery of 11 additional RNA-positive samples from a total of 2440 screened (0.45%) revealed 93–94% nucleotide identity between HPgV-2 strains. All 12 HPgV-2 RNA-positive cases were identified in individuals also testing positive for HCV RNA (12 of 983; 1.22%), including 2 samples co-infected with HIV, but HPgV-2 RNA was not detected in non-HCV-infected individuals (p<0.0001), including those singly infected by HIV (p = 0.0075) or HBV (p = 0.0077), nor in volunteer blood donors (p = 0.0082). Nine of the 12 (75%) HPgV-2 RNA positive samples were reactive for antibodies to viral serologic markers, whereas only 28 of 2,429 (1.15%) HPgV-2 RNA negative samples were seropositive. Longitudinal sampling in two individuals revealed that active HPgV-2 infection can persist in blood for at least 7 weeks, despite the presence of virus-specific antibodies. One individual harboring both HPgV-2 and HCV RNA was found to be seronegative for both viruses, suggesting a high likelihood of simultaneous acquisition of HCV and HPgV-2 infection from an acute co-transmission event. Taken together, our results indicate that HPgV-2 is a novel bloodborne infectious virus of humans and likely transmitted via the parenteral route.
Journal of Clinical Microbiology | 2016
Gavin Cloherty; Andrew H. Talal; Kelly E. Coller; Corklin Steinhart; John Hackett; George J. Dawson; Juergen Rockstroh; Jordan J. Feld
ABSTRACT The drugs available for the treatment of hepatitis C virus (HCV) have evolved to provide shorter treatment duration and higher rates of sustained virologic response (SVR), and the role of HCV infection diagnostic tests has had to evolve in order to meet changing clinical needs. This review gives an overview on the role of HCV infection diagnostic testing (molecular and serological tools) used in the diagnosis and management of HCV infection. All of this critical information guides physician decisions to optimize patient clinical outcomes. Also discussed is the future direction of diagnostic testing in the context of further advances in drug development.
Journal of Clinical Microbiology | 2016
Kelly E. Coller; Michael Berg; Matthew Frankel; Kenn Forberg; Rita Surani; Charles Y. Chiu; John Hackett; George J. Dawson
ABSTRACT A novel blood-borne human pegivirus (HPgV), HPgV-2, was recently identified in hepatitis C virus (HCV)-infected individuals and individuals who had received multiple transfusions. Robust serological assays capable of detecting antibodies in HPgV-2-infected individuals are needed to establish global seroprevalence rates and potential disease associations. The two objectives of this study were to determine the utility of mammalian cell-expressed HPgV-2 E2 glycoprotein or bacterium-expressed nonstructural protein 4AB (NS4AB) in detecting past or present infections and to compare the total prevalence (antibody and RNA positive) of HPgV-2 with that of the other human pegivirus, HPgV-1 (GB virus C [GBV-C]). HPgV-2 E2 antibodies were detected in 13 (92.86%) of 14 HPgV-2-viremic cases, and NS4AB antibodies were detected in 8 (57.14%) of 14 cases. The HPgV-2 seroprevalence was significantly higher (P < 0.0001) among HCV-infected individuals (3.31% [24 of 726 samples]) than among non-HCV-infected individuals (0.30% [4 of 1,348 samples]). Of 31 anti-E2-positive samples, 22 had supplemental supporting data; 12 samples were HPgV-2 RNA positive and 10 nonviremic samples were antibody positive for peptides or NS4AB. The total prevalence of HPgV-1 (35.00%) was significantly higher than that of HPgV-2 (1.33%) in all populations tested (P < 0.0001). For HPgV-1, codetection of antibodies to E2 and RNA was infrequent (5.88%). In contrast, antibodies to E2 were detected in most HPgV-2-viremic individuals (92.86%), as is observed among individuals chronically infected with HCV, most of whom are antibody positive for HCV E2. Our studies indicate that HPgV-2 circulates with HCV and displays a profile similar to the serological profile of HCV-infected persons, although the pathogenicity of this virus has yet to be established.
Scientific Reports | 2018
Kelly E. Coller; Emily K. Butler; Ka-Cheung Luk; Mary A. Rodgers; Michael Cassidy; Jeffrey Gersch; Anne L. McNamara; Mary C. Kuhns; George J. Dawson; Lazare Kaptue; B. Bremer; Heiner Wedemeyer; Gavin Cloherty
Worldwide, an estimated 5% of hepatitis B virus (HBV) infected people are coinfected with hepatitis delta virus (HDV). HDV infection leads to increased mortality over HBV mono-infection, yet HDV diagnostics are not widely available. Prototype molecular (RNA) and serologic (IgG) assays were developed for high-throughput testing on the Abbott m2000 and ARCHITECT systems, respectively. RNA detection was achieved through amplification of a ribozyme region target, with a limit of detection of 5 IU/ml. The prototype serology assay (IgG) was developed using peptides derived from HDV large antigen (HDAg), and linear epitopes were further identified by peptide scan. Specificity of an HBV negative population was 100% for both assays. A panel of 145 HBsAg positive samples from Cameroon with unknown HDV status was tested using both assays: 16 (11.0%) had detectable HDV RNA, and 23 (15.7%) were sero-positive including the 16 HDV RNA positive samples. Additionally, an archival serial bleed panel from an HDV superinfected chimpanzee was tested with both prototypes; data was consistent with historic testing data using a commercial total anti-Delta test. Overall, the two prototype assays provide sensitive and specific methods for HDV detection using high throughput automated platforms, allowing opportunity for improved diagnosis of HDV infected patients.
Scientific Reports | 2018
Emily K. Butler; Mary A. Rodgers; Kelly E. Coller; Devin Barnaby; Elizabeth Krilich; Ana Olivo; Michael Cassidy; Dora Mbanya; Lazare Kaptue; Nicaise Ndembi; Gavin Cloherty
Hepatitis delta virus (HDV), a satellite virus of hepatitis B virus (HBV), infects an estimated 15–20 million people worldwide and confers a greater risk for accelerated progression to liver disease. However, limited HDV surveillance data are available in sub-Saharan Africa where HDV diversity is high. To determine the prevalence and diversity of HDV in Cameroon, serological and molecular characterization was performed on 1928 HBsAg positive specimens selected from retrospective viral surveillance studies conducted in Cameroon from 2010–2016. Samples were screened for HDV antibodies on the Abbott ARCHITECT instrument and for HDV RNA on the Abbott m2000 instrument by research assays. HDV positive specimens with sufficient viral load were selected for genomic sequencing. The seroprevalence of HDV in HBsAg positive samples from Cameroon was 46.73% [95% CI; 44.51–48.96%], with prevalence of active HDV infection being 34.2% [95% CI; 32.09–36.41%]. HDV genotypes 1, 6, 7 and 8 were identified amongst N = 211 sequences, including N = 145 genomes. HDV prevalence is high within the study cohort, indicating that a large portion of HBV infected individuals in Cameroon are at elevated risk for severe hepatitis and death. Collectively, these results emphasize the need for HBV vaccination and HDV testing in HBsAg positive patients in Cameroon.
PLOS ONE | 2018
Ka-Cheung Luk; Kelly E. Coller; George J. Dawson; Gavin Cloherty
Hepatitis E virus (HEV) is a viral pathogen transmitted by the fecal-oral route and is a major cause of waterborne acute hepatitis in many developing countries. In addition to infecting humans, HEV has been identified in swine, wild boars, rabbits and other mammals; with swine and wild boars being main reservoirs for zoonotic transmission of HEV. There are four major HEV genotypes known to infect humans; genotypes 1 (HEV-1) and 2 (HEV-2) are restricted to humans, and genotypes 3 (HEV-3) and 4 (HEV-4) are zoonotic. Herein, three human HEV strains originating in France were sequenced and near full-length genomes were characterized. Phylogenetic analysis showed that two strains were genotype 3 and closely grouped (a 100% bootstrap value) with subtype 3i reference strains. In percent nucleotide identities, these two strains were 94% identical to each other, 90–93% identical to subtype 3i strains, 82–86% identical to other HEV-3, and 77–79% identical to rabbit HEV strains excluding the two divergent strains KJ013414 and KJ013415 (74%); these two strains were less than 77% identical to strains of HEV genotypes 1, 2 and 4. The third strain was found distinct from any known HEV strains in the database, and located between the clusters of HEV-3 and rabbit HEV strains. This unique strain was 74–75% identical to HEV-1, 73% to HEV-2, 81–82% to HEV-3, 77–79% to rabbit HEV again excluding the two divergent strains KJ013414 and KJ013415 (74%), and 74–75% to HEV-4, suggesting a novel unclassified strain associated with HEV-3 and rabbit HEV. SimPlot and BootScan analyses revealed a putative recombination of HEV-3 and rabbit HEV sequences at four breakpoints. Phylogenetic trees of the five fragments of the genome confirmed the presence of two HEV-3 derived and three unclassified sequences. Analyses of the amino acid sequences of the three open reading frames (ORF1-3) encoded proteins of these three novel strains showed that some amino acid residues specific to rabbit HEV strains were found solely in this unclassified strain but not in the two newly identified genotype 3i strains. The results obtained by SimPlots, BootScans, phylogenetic analyses, and amino acid sequence comparisons in this study all together appear to suggest that this novel unclassified strain is likely carrying a mosaic genome derived from HEV-3 and rabbit HEV sequences, and is thus designated as a putative genotype 3/rabbit HEV recombinant.
Journal of Viral Hepatitis | 2018
Mary A. Rodgers; Vera Holzmayer; Ana Vallari; Ana Olivo; Kenn Forberg; Jill Fuhrman; Kelly E. Coller; Bih Awazi; Jules Bertrand Kenmegne Sidje; Matthew Frankel; Michael Berg; Dora Mbanya; Nicaise Ndembi; Gavin Cloherty
The prevalence of chronic hepatitis C virus (HCV) and the presence of human pegivirus 2 (HPgV‐2) have not been examined in Cameroon, although HCV has been associated with HPgV‐2 infections previously. Herein we aimed to characterize the burden and genetic diversity of HCV and the presence of HPgV‐2 in Cameroon. Retrospective plasma specimens collected from N = 12 369 consenting subjects in South Cameroon from 2013 to 2016 were included in the study. The majority (97.1%) of participants were patients seeking health care. All specimens were screened for HCV using the Abbott RealTime HCV viral load assay and positive specimens with remaining volume were also screened for HPgV‐2 antibodies on the Abbott ARCHITECT instrument, followed by molecular characterization. Overall, HCV RNA was detected in 305 (2.47%; 95% CI: 2.21%‐2.75%) specimens. Notably, the prevalence of HCV RNA was 9.09% amongst participants over age 40 and 3.81% amongst males. Phylogenetic classification of N = 103 HCV sequences identified genotypes 1 (19.4%), 2 (15.5%) and 4 (65.1%) within the study cohort. Amongst HCV RNA‐positive specimens, N = 28 (10.6%; 95% CI: 7.44%‐14.90%) specimens also had detectable HPgV‐2 antibodies. Of these, N = 2 viremic HPgV‐2 infections were confirmed by sequencing and shared 93‐94 median % identity with strains found on other continents. This is the first study to determine the prevalence of chronic HCV in Cameroon, and the discovery of HPgV‐2 in this study cohort expands the geography of HPgV‐2 to the African continent, indicating a widespread distribution exists.
Cell Host & Microbe | 2018
Yasmine M. Baktash; Anisha Madhav; Kelly E. Coller; Glenn Randall