Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly Hanley is active.

Publication


Featured researches published by Kelly Hanley.


Bioresource Technology | 2012

Characterization of biochars to evaluate recalcitrance and agronomic performance

Akio Enders; Kelly Hanley; Thea Whitman; Stephen Joseph; Johannes Lehmann

Biochars (n=94) were found to have ash contents from 0.4% to 88.2%, volatile matter from 13.2% to 70.0%, and fixed carbon from 0% to 77.4% (w/w). Greater pyrolysis temperature for low-ash biochars increased fixed carbon, but decreased it for biochars with more than 20% ash. Nitrogen recovery varied depending on feedstock used to a greater extent (12-68%) than organic (25-45%) or total C (41-76%) at a pyrolysis temperature of 600 °C. Fixed carbon production ranged from no enrichment in poultry biochar to a 10-fold increase in corn biochar (at 600 °C). Prediction of biochar stability was improved by a combination of volatile matter and H:C ratios corrected for inorganic C. In contrast to stability, agronomic utility of biochars is not an absolute value, as it needs to meet local soil constraints. Woody feedstock demonstrated the greatest versatility with pH values ranging from 4 to 9.


Scientific Reports | 2013

Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?

María Luz Cayuela; Miguel A. Sánchez-Monedero; A. Roig; Kelly Hanley; Akio Enders; Johannes Lehmann

Agricultural soils represent the main source of anthropogenic N2O emissions. Recently, interactions of black carbon with the nitrogen cycle have been recognized and the use of biochar is being investigated as a means to reduce N2O emissions. However, the mechanisms of reduction remain unclear. Here we demonstrate the significant impact of biochar on denitrification, with a consistent decrease in N2O emissions by 10–90% in 14 different agricultural soils. Using the 15N gas-flux method we observed a consistent reduction of the N2O/(N2 + N2O) ratio, which demonstrates that biochar facilitates the last step of denitrification. Biochar acid buffer capacity was identified as an important aspect for mitigation that was not primarily caused by a pH shift in soil. We propose the function of biochar as an “electron shuttle” that facilitates the transfer of electrons to soil denitrifying microorganisms, which together with its liming effect would promote the reduction of N2O to N2.


Environmental Science & Technology | 2011

Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar.

Sarah E. Hale; Kelly Hanley; Johannes Lehmann; Andrew R. Zimmerman; Gerard Cornelissen

In this study, the suitability of biochar and activated carbon (AC) for contaminated soil remediation is investigated by determining the sorption of pyrene to both materials in the presence and absence of soil and before as well as after aging. Biochar and AC were aged either alone or mixed with soil via exposure to (a) nutrients and microorganisms (biological), (b) 60 and 110 °C (chemical), and (c) freeze-thaw cycles (physical). Before and after aging, the pH, elemental composition, cation exchange capacity (CEC), microporous SA, and sorption isotherms of pyrene were quantified. Aging at 110 °C altered the physicochemical properties of all materials to the greatest extent (for example, pH increased by up to three units and CEC by up to 50% for biochar). Logarithmic K(Fr) values ranged from 7.80 to 8.21 (ng kg(-1))(ng L(-1))(-nF) for AC and 5.22 to 6.21 (ng kg(-1))(ng L(-1))(-nF) for biochar after the various aging regimes. Grinding biochar to a smaller particle size did not significantly affect the sorption of d(10) pyrene, implying that sorption processes operate on the subparticle scale. Chemical aging decreased the sorption of pyrene to the greatest extent (up to 1.8 log unit for the biochar+soil). The sorption to AC was affected more by the presence of soil than the sorption to biochar was. Our results suggest that AC and biochar have a high sorption capacity for pyrene that is maintained both in the presence of soil and during harsh aging. Both materials could therefore be considered in contaminated land remediation.


Chemosphere | 2015

Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH

Bing Wang; Johannes Lehmann; Kelly Hanley; Rachel Hestrin; Akio Enders

The objective of this work was to investigate the retention mechanisms of ammonium in aqueous solution by using progressively oxidized maple wood biochar at different pH values. Hydrogen peroxide was used to oxidize the biochar to pH values ranging from 8.1 to 3.7, with one set being adjusted to a pH of 7 afterwards. Oxidizing the biochars at their lowered pH did not increase their ability to adsorb ammonium. However, neutralizing the oxygen-containing surface functional groups on oxidized biochar to pH 7 increased ammonia adsorption two to three-fold for biochars originally at pH 3.7-6, but did not change adsorption of biochars oxidized to pH 7 and above. The adsorption characteristics of ammonium are well described by the Freundlich equation. Adsorption was not fully reversible in water, and less than 27% ammonium was desorbed in water in two consecutive steps than previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 2M KCl increased from 34% to 99% of ammonium undesorbed by both preceding water extractions with increasing oxidation, largely irrespective of pH adjustment. Unrecovered ammonium in all extractions and residual biochar was negligible at high oxidation, but increased to 39% of initially adsorbed amounts at high pH, likely due to low amounts adsorbed and possible ammonia volatilization losses.


Science of The Total Environment | 2015

Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.

Xavier Domene; Akio Enders; Kelly Hanley; Johannes Lehmann

Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; p<0.0001, n=21) and increased with a higher volatile matter content (r=0.51; p<0.017), these two variables being correlated (r=-0.86, p<0.0001). Collembolan reproduction was generally unaffected by any of the additions, but when inhibited, it was mostly influenced by feedstock, and generally without any influence of charring itself and pyrolysis temperature. Strong inhibition was only observed in uncharred food waste and resulting biochars. Inhibition effects were probably linked to high soluble Na and NH4 concentrations when both feedstocks and biochars were considered, but mostly to soluble Na when only biochars were taken into account. The general lack of toxicity of the set of slow pyrolysis biochars in this study at typical field application rates (≤20 Mg ha(-1)) suggests a low short-term toxicity risk. At higher application rates (20-540 Mg ha(-1)), some biochars affected collembolan reproduction to some extent, but only strongly in the food waste biochars. Such negative impacts were not anticipated by the criteria set in currently available biochar quality standards, pointing out the need to consider ecotoxicological criteria either explicitly or implicitly in biochar characterization schemes or in management recommendations.


Journal of Agricultural and Food Chemistry | 2016

Toward the Standardization of Biochar Analysis: The COST Action TD1107 Interlaboratory Comparison

Hans Jörg Bachmann; Thomas D. Bucheli; Alba Dieguez-Alonso; Daniele Fabbri; Heike Knicker; Hans-Peter Schmidt; Axel Ulbricht; Roland Becker; Alessandro Buscaroli; Diane Buerge; Andrew Cross; Dane Dickinson; Akio Enders; Valdemar I. Esteves; Michael W.H. Evangelou; Guido Fellet; K. Friedrich; Gabriel Gasco Guerrero; Bruno Glaser; Ulrich Michael Hanke; Kelly Hanley; Isabel Hilber; Dimitrios Kalderis; Jens Leifeld; Ondrej Masek; Jan Mumme; Marina Paneque Carmona; Roberto Calvelo Pereira; Frédéric Rees; Alessandro G. Rombolà

Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.


Bioresource Technology | 2015

Reverse engineering of biochar

Verónica L. Morales; Francisco J. Pérez-Reche; Simona M. Hapca; Kelly Hanley; Johannes Lehmann; Wei Zhang

This study underpins quantitative relationships that account for the combined effects that starting biomass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was assembled from published data of diverse biochar samples (n=102) to (i) obtain networks of intercorrelated properties and (ii) derive models that predict biochar properties. Assembled correlation networks provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Generalized Linear Models are constructed to account for situations of varying complexity, including: dependence of biochar properties on single or multiple predictor variables, where dependence on multiple variables can have additive and/or interactive effects; non-linear relation between the response and predictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived models to maximize their utility and distribution. Provided examples illustrate the practical use of the networks, models and web-tool to engineer biochars with prescribed properties desirable for hypothetical scenarios.


RSC Advances | 2016

Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times

Bing Wang; Johannes Lehmann; Kelly Hanley; Rachel Hestrin; Akio Enders

In order to investigate the effects of pyrolysis conditions and oxidation on the retention potential of ammonium by biochar in aqueous solution, biochars were produced from mixed maple wood at different pyrolysis temperatures (300, 400, 500, 600, 700 °C) and residence times (5, 60, 120, 400, 800 min) and adsorption and desorption was determined. Hydrogen peroxide was used to oxidize the biochars with pH values ranging from 7.6 to 2.7, with one set being adjusted to a pH of 7 afterwards. Without oxidation, varying either pyrolysis temperatures or residence times did not have a relevant effect on ammonium adsorption. When oxidized, however, ammonium adsorption was up to 3.6 and 1.6 times greater at lower higher pyrolysis temperatures and shorter longer residence times, respectively. Neutralizing the oxygen-containing surface functional groups on oxidized biochar to pH 7 further increased ammonium adsorption three to four-fold for biochars originally at a temperature of 500 °C and residence time of 5 min, but did not change adsorption of biochars pyrolyzed at 600 °C and above and residence times at 400 min and above. Adjusting the pH of unoxidized biochars had no effect on ammonium adsorption. Both pyrolysis temperature and residence time significantly influence the way oxidation changes the charge properties with respect to ammonium adsorption by woody biochar.


Journal of Microbial & Biochemical Technology | 2016

Pore-Size and Water Activity Effects on Survival of Rhizobium tropici inBiochar Inoculant Carriers

Steven J. Vanek; Janice E. Thies; Bing Wang; Kelly Hanley; Johannes Lehmann

Research examining biochar (pyrolyzed biomass) as a microbial inoculant carrier may enable broader use of inoculant microbes and elucidate relationships between non-spore forming bacteria, such as rhizobia, and their microhabitats in carriers and soils. We tested 32 biochars as habitat for Rhizobium tropici (CIAT 899) to quantify the effects of pore size distribution, chemical characteristics and clay addition on bacterial abundance, in both in sixmonth storage incubations at 27°C, and under drying conditions. Pressure plate measurements and micrographic analysis yielded correlated estimates of mean macropore (0.3-30 μm) size in the different biochar carriers (r=0.80, p<0.0001). Macropore size was assigned to the first principal component of variation in biochar properties, along with mineral content derived from plant feedstocks. Under moist storage conditions, a number of biochars were equivalent to peat as microbial carriers. Rhizobium tropici abundance in these storage incubations exhibited a quadratic dependence on biochar pore size (p<0.001) with maximal abundance at a macropore size of 13.6 μm (pressure plate) or 10.1 μm (micrographs). Abundance was lower for biochars with higher ASTM volatile content (p<0.001) and was increased by plant feedstock derived mineral content in the biochars (p<0.01). Goethite and Montmorillonite additions to biochar before pyrolysis increased macropores of size <0.3 μm. Added Goethite reduced bacterial survival, while montmorillonite increased R. tropici abundance in a large-pored pine biochar by 10 times (p<0.05), and improved its survival between two and 11 times (p<0.001) in four biochars after drying for 10 days. We conclude that optimizing pore size distribution and chemical properties of biochars is a promising strategy to produce carrier materials that are as effective as mined irradiated peat for non-spore forming bacteria such as R. tropici.


Biology and Fertility of Soils | 2012

Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil

Shelby Rajkovich; Akio Enders; Kelly Hanley; Charles Hyland; Andrew R. Zimmerman; Johannes Lehmann

Collaboration


Dive into the Kelly Hanley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Domene

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Bing Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Jacobsen

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge