Kelly Jean Thomas
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly Jean Thomas.
Human Molecular Genetics | 2011
Kelly Jean Thomas; Melissa K. McCoy; Jeff Blackinton; Alexandra Beilina; Marcel van der Brug; Anna Sandebring; David S. Miller; Dragan Maric; Angel Cedazo-Minguez; Mark R. Cookson
Mutations in DJ-1, PINK1 (PTEN-induced putative kinase 1) and parkin all cause recessive parkinsonism in humans, but the relationships between these genes are not clearly defined. One event associated with loss of any of these genes is altered mitochondrial function. Recent evidence suggests that turnover of damaged mitochondria by autophagy might be central to the process of recessive parkinsonism. Here, we show that loss of DJ-1 leads to loss of mitochondrial polarization, fragmentation of mitochondria and accumulation of markers of autophagy (LC3 punctae and lipidation) around mitochondria in human dopaminergic cells. These effects are due to endogenous oxidative stress, as antioxidants will reverse all of them. Similar to PINK1 and parkin, DJ-1 also limits mitochondrial fragmentation in response to the mitochondrial toxin rotenone. Furthermore, overexpressed parkin will protect against loss of DJ-1 and, although DJ-1 does not alter PINK1 mitochondrial phenotypes, DJ-1 is still active against rotenone-induced damage in the absence of PINK1. None of the three proteins complex together using size exclusion chromatography. These data suggest that DJ-1 works in parallel to the PINK1/parkin pathway to maintain mitochondrial function in the presence of an oxidative environment.
Annals of Neurology | 2008
Heather Mortiboys; Kelly Jean Thomas; Werner J.H. Koopman; Stefanie Klaffke; Patrick M. Abou-Sleiman; S. E. Olpin; Nicholas W. Wood; Peter H.G.M. Willems; Jan A.M. Smeitink; Mark R. Cookson; Oliver Bandmann
There are marked mitochondrial abnormalities in parkin‐knock‐out Drosophila and other model systems. The aim of our study was to determine mitochondrial function and morphology in parkin‐mutant patients. We also investigated whether pharmacological rescue of impaired mitochondrial function may be possible in parkin‐mutant human tissue.
Biochemistry | 2009
Andreas Weihofen; Kelly Jean Thomas; Beth L. Ostaszewski; Mark R. Cookson; Dennis J. Selkoe
Recessive mutations in Pink1 lead to a selective degeneration of dopaminergic neurons in the substantia nigra that is characteristic of Parkinson disease. Pink1 is a kinase that is targeted in part to mitochondria, and loss of Pink1 function can alter mitochondrial morphology and dynamics, thus supporting a link between mitochondrial dysfunction and Parkinson disease etiology. Here, we report the unbiased identification and confirmation of a mitochondrial multiprotein complex that contains Pink1, the atypical GTPase Miro, and the adaptor protein Milton. Our screen also identified an interaction between Pink1 and Mitofilin. Based on previously established functions for Miro and Milton in the trafficking of mitochondria along microtubules, we postulate here a role for Pink1 in mitochondrial trafficking. Using subcellular fractionation, we show that the overexpression of Miro and Milton, both of which are known to reside at the outer mitochondrial membrane, increases the mitochondrial Pink1 pool, suggesting a function of Pink1 at the outer membrane. Further, we document that Pink1 expressed without a mitochondrial targeting sequence can still be targeted to a mitochondria-enriched subcellular fraction via Miro and Milton. The latter finding is important for the interpretation of a previously reported protective effect of Pink1 expressed without a mitochondrial targeting sequence. Finally, we find that Miro and Milton expression suppresses altered mitochondrial morphology induced by loss of Pink1 function in cell culture. Our findings suggest that Pink1 functions in the trafficking of mitochondria in cells.
Journal of Biological Chemistry | 2008
Elisa Greggio; Ibardo Zambrano; Alice Kaganovich; Alexandra Beilina; Jean-Marc Taymans; Veronique Daniëls; Patrick A. Lewis; Shushant Jain; Jinhui Ding; Ali Syed; Kelly Jean Thomas; Veerle Baekelandt; Mark R. Cookson
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and apparently sporadic Parkinson disease. LRRK2 is a multidomain protein kinase with autophosphorylation activity. It has previously been shown that the kinase activity of LRRK2 is required for neuronal toxicity, suggesting that understanding the mechanism of kinase activation and regulation may be important for the development of specific kinase inhibitors for Parkinson disease treatment. Here, we show that LRRK2 predominantly exists as a dimer under native conditions, a state that appears to be stabilized by multiple domain-domain interactions. Furthermore, an intact C terminus, but not N terminus, is required for autophosphorylation activity. We identify two residues in the activation loop that contribute to the regulation of LRRK2 autophosphorylation. Finally, we demonstrate that LRRK2 undergoes intramolecular autophosphorylation. Together, these results provide insight into the mechanism and regulation of LRRK2 kinase activity.
Proceedings of the National Academy of Sciences of the United States of America | 2008
M. Emdadul Haque; Kelly Jean Thomas; Cheryl D'Souza; Steve Callaghan; Tohru Kitada; Ruth S. Slack; Paul D. Fraser; Mark R. Cookson; Anurag Tandon; David S. Park
PTEN-induced putative kinase 1 (Pink1) is a recently identified gene linked to a recessive form of familial Parkinsons disease (PD). The kinase contains a mitochondrial localization sequence and is reported to reside, at least in part, in mitochondria. However, neither the manner by which the loss of Pink1 contributes to dopamine neuron loss nor its impact on mitochondrial function and relevance to death is clear. Here, we report that depletion of Pink1 by RNAi increased neuronal toxicity induced by MPP+. Moreover, wild-type Pink1, but not the G309D mutant linked to familial PD or an engineered kinase-dead mutant K219M, protects neurons against MPTP both in vitro and in vivo. Intriguingly, a mutant that contains a deletion of the putative mitochondrial-targeting motif was targeted to the cytoplasm but still provided protection against 1-methyl-4-phenylpyridine (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity. In addition, we also show that endogenous Pink1 is localized to cytosolic as well as mitochondrial fractions. Thus, our findings indicate that Pink1 plays a functional role in the survival of neurons and that cytoplasmic targets, in addition to its other actions in the mitochondria, may be important for this protective effect.
Journal of Biological Chemistry | 2009
Jeff Blackinton; Mahadevan Lakshminarasimhan; Kelly Jean Thomas; Rili Ahmad; Elisa Greggio; Ashraf S. Raza; Mark R. Cookson; Mark A. Wilson
The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Marcel van der Brug; Jeff Blackinton; Jayanth Chandran; Ling Yang Hao; Ashish Lal; Krystyna Mazan-Mamczarz; Jennifer L. Martindale; Chengsong Xie; Rili Ahmad; Kelly Jean Thomas; Alexandra Beilina; J. Raphael Gibbs; Jinhui Ding; Amanda J. Myers; Ming Zhan; Huaibin Cai; Nancy M. Bonini; Myriam Gorospe; Mark R. Cookson
Parkinsons disease (PD) is a major neurodegenerative condition with several rare Mendelian forms. Oxidative stress and mitochondrial function have been implicated in the pathogenesis of PD but the molecular mechanisms involved in the degeneration of neurons remain unclear. DJ-1 mutations are one cause of recessive parkinsonism, but this gene is also reported to be involved in cancer by promoting Ras signaling and suppressing PTEN-induced apoptosis. The specific function of DJ-1 is unknown, although it is responsive to oxidative stress and may play a role in the maintenance of mitochondria. Here, we show, using four independent methods, that DJ-1 associates with RNA targets in cells and the brain, including mitochondrial genes, genes involved in glutathione metabolism, and members of the PTEN/PI3K cascade. Pathogenic recessive mutants are deficient in this activity. We show that DJ-1 is sufficient for RNA binding at nanomolar concentrations. Further, we show that DJ-1 binds RNA but dissociates after oxidative stress. These data implicate a single mechanism for the pleiotropic effects of DJ-1 in different model systems, namely that the protein binds multiple RNA targets in an oxidation-dependent manner.
PLOS ONE | 2009
Anna Sandebring; Kelly Jean Thomas; Alexandra Beilina; Marcel van der Brug; Megan M. Cleland; Rili Ahmad; David W. Miller; Ibardo Zambrano; Richard F. Cowburn; Homira Behbahani; Angel Cedazo-Minguez; Mark R. Cookson
PTEN-induced novel kinase 1 (PINK1) mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1) exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential.
The International Journal of Biochemistry & Cell Biology | 2009
Kelly Jean Thomas; Mark R. Cookson
Mutations in parkin, PTEN-induced kinase 1 (PINK1) and DJ-1 can all cause autosomal recessive forms of Parkinsons disease. Recent data suggest that these recessive parkinsonism-associated genes converge within a single pathogenic pathway whose dysfunction leads to the loss of substantia nigra pars compacta neurons. The major common functional effects of all three genes relate to mitochondrial and oxidative damage, with a possible additional involvement of the ubiquitin proteasome system. This review highlights the role of the mitochondrial kinase, PINK1, in protection against mitochondrial dysfunction and how this might relate to loss of substantia nigra neurons in recessive parkinsonism.
FEBS Journal | 2009
Anna Sandebring; Nodi Dehvari; Monica Perez-Manso; Kelly Jean Thomas; Elena Karpilovski; Mark R. Cookson; Richard F. Cowburn; Angel Cedazo-Minguez
Mutations in the E3 ubiquitin ligase parkin cause early‐onset, autosomal‐recessive juvenile parkinsonism (AJRP), presumably as a result of a lack of function that alters the level, activity, aggregation or localization of its substrates. Recently, we have reported that phospholipase Cγ1 is a substrate for parkin. In this article, we show that parkin mutants and siRNA parkin knockdown cells possess enhanced levels of phospholipase Cγ1 phosphorylation, basal phosphoinositide hydrolysis and intracellular Ca2+ concentration. The protein levels of Ca2+‐regulated protein kinase Cα were decreased in AJRP parkin mutant cells. Neomycin and dantrolene both decreased the intracellular Ca2+ levels in parkin mutants in comparison with those seen in wild‐type parkin cells, suggesting that the differences were a consequence of altered phospholipase C activity. The protection of wild‐type parkin against 6‐hydroxydopamine (6OHDA) toxicity was also established in ARJP mutants on pretreatment with dantrolene, implying that a balancing Ca2+ release from ryanodine‐sensitive stores decreases the toxic effects of 6OHDA. Our findings suggest that parkin is an important factor for maintaining Ca2+ homeostasis and that parkin deficiency leads to a phospholipase C‐dependent increase in intracellular Ca2+ levels, which make cells more vulnerable to neurotoxins, such as 6OHDA.