Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly K. Chong.
Cell | 2012
Eran Hodis; Ian R. Watson; Gregory V. Kryukov; Stefan T. Arold; Marcin Imielinski; Jean Philippe Theurillat; Elizabeth Nickerson; Daniel Auclair; Liren Li; Chelsea S. Place; Daniel DiCara; Alex H. Ramos; Michael S. Lawrence; Kristian Cibulskis; Andrey Sivachenko; Douglas Voet; Gordon Saksena; Nicolas Stransky; Robert C. Onofrio; Wendy Winckler; Kristin Ardlie; Nikhil Wagle; Jennifer A. Wargo; Kelly K. Chong; Donald L. Morton; Katherine Stemke-Hale; Guo Chen; Michael S. Noble; Matthew Meyerson; John E. Ladbury
Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.
PLOS ONE | 2009
Sharon K. Huang; Marlene Darfler; Michael B. Nicholl; Jinsam You; Kerry G. Bemis; Tony Tegeler; Mu Wang; Jean-Pierre Wery; Kelly K. Chong; Linhda Nguyen; Richard A. Scolyer; Dave S.B. Hoon
Background Melanoma metastasis status is highly associated with the overall survival of patients; yet, little is known about proteomic changes during melanoma tumor progression. To better understand the changes in protein expression involved in melanoma progression and metastasis, and to identify potential biomarkers, we conducted a global quantitative proteomic analysis on archival metastatic and primary melanomas. Methodology and Findings A total of 16 metastatic and 8 primary cutaneous melanomas were assessed. Proteins were extracted from laser captured microdissected formalin fixed paraffin-embedded archival tissues by liquefying tissue cells. These preparations were analyzed by a LC/MS-based label-free protein quantification method. More than 1500 proteins were identified in the tissue lysates with a peptide ID confidence level of >75%. This approach identified 120 significant changes in protein levels. These proteins were identified from multiple peptides with high confidence identification and were expressed at significantly different levels in metastases as compared with primary melanomas (q-Value<0.05). Conclusions and Significance The differentially expressed proteins were classified by biological process or mapped into biological system networks, and several proteins were implicated by these analyses as cancer- or metastasis-related. These proteins represent potential biomarkers for tumor progression. The study successfully identified proteins that are differentially expressed in formalin fixed paraffin-embedded specimens of metastatic and primary melanoma.
Human Molecular Genetics | 2014
Diego M. Marzese; Richard A. Scolyer; Jamie L. Huynh; Sharon K. Huang; Hajime Hirose; Kelly K. Chong; Eiji Kiyohara; Jinhua Wang; Neal P. Kawas; Nicholas C. Donovan; Keisuke Hata; James S. Wilmott; Rajmohan Murali; Michael E. Buckland; Brindha Shivalingam; John F. Thompson; Donald L. Morton; Daniel F. Kelly; Dave S.B. Hoon
Melanoma brain metastasis (MBM) represents a frequent complication of cutaneous melanoma. Despite aggressive multi-modality therapy, patients with MBM often have a survival rate of <1 year. Alteration in DNA methylation is a major hallmark of tumor progression and metastasis; however, it remains largely unexplored in MBM. In this study, we generated a comprehensive DNA methylation landscape through the use of genome-wide copy number, DNA methylation and gene expression data integrative analysis of melanoma progression to MBM. A progressive genome-wide demethylation in low CpG density and an increase in methylation level of CpG islands according to melanoma progression were observed. MBM-specific partially methylated domains (PMDs) affecting key brain developmental processes were identified. Differentially methylated CpG sites between MBM and lymph node metastasis (LNM) from patients with good prognosis were identified. Among the most significantly affected genes were the HOX family members. DNA methylation of HOXD9 gene promoter affected transcript and protein expression and was significantly higher in MBM than that in early stages. A MBM-specific PMD was identified in this region. Low methylation level of this region was associated with active HOXD9 expression, open chromatin and histone modifications associated with active transcription. Demethylating agent induced HOXD9 expression in melanoma cell lines. The clinical relevance of this finding was verified in an independent large cohort of melanomas (n = 145). Patients with HOXD9 hypermethylation in LNM had poorer disease-free and overall survival. This epigenome-wide study identified novel methylated genes with functional and clinical implications for MBM patients.
Oncogene | 2009
Norihiko Narita; Atsushi Tanemura; Rajmohan Murali; Richard A. Scolyer; S S H Huang; Takaaki Arigami; S Yanagita; Kelly K. Chong; John F. Thompson; D.L. Morton; Ds Hoon
RET proto-oncogene encodes a receptor tyrosine kinase whose ligand is glial cell line-derived neurotrophic factor (GDNF), and its polymorphism at G691S juxtamembrane region (RETp) is a germline polymorphism. Cutaneous melanomas, particularly the desmoplastic subtype, are highly neurotropic; thus we sought to determine the frequency of RETp in cutaneous melanoma and its functional responsiveness to GDNF. RETp was assessed in 71 non-desmoplastic cutaneous melanomas (non-DMs) and 70 desmoplastic melanomas (DMs). Melanoma cell lines with RETp, RET wild type (RETwt), BRAF V600E mutation (BRAFmt) or BRAF wild type (BRAFwt) were assessed for functional activity. RETp frequency was significantly higher in DMs (61%) than in non-DMs (31%, P<0.001). BRAFmt was detected in only 11% of DMs. GDNF stimulation significantly amplified cell proliferation, migration and invasion in RETp, but not in RETwt melanoma cells. GDNF stimulation of RETp cell lines enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and Akt of the RET-RAS-RAF-ERK and RET-phosphatidylinositol 3-kinase (PI3K)-Akt pathways, respectively. GDNF response of RETp cells in signal transduction and other functional studies were not affected by BRAFmt. The study demonstrates that RETp is frequently found in cutaneous melanoma, particularly desmoplastic subtypes, and responds to GDNF inducing events favorable for tumor progression.
Journal of Clinical Oncology | 2012
Sojun Hoshimoto; Tatsushi Shingai; Donald L. Morton; Christine Kuo; Mark B. Faries; Kelly K. Chong; David Elashoff; He-Jing Wang; Robert Elashoff; Dave S.B. Hoon
PURPOSE The outcomes of patients with melanoma who have sentinel lymph node (SLN) metastases can be highly variable, which has precluded establishment of consensus regarding treatment of the group. The detection of high-risk patients from this clinical setting may be helpful for determination of both prognosis and management. We report the utility of multimarker reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) detection of circulating tumor cells (CTCs) in patients with melanoma diagnosed with SLN metastases in a phase III, international, multicenter clinical trial. PATIENTS AND METHODS Blood specimens were collected from patients with melanoma (n = 331) who were clinically disease-free after complete lymphadenectomy (CLND) before entering onto a randomized adjuvant melanoma vaccine plus bacillus Calmette-Guérin (BCG) versus BCG placebo trial from 30 melanoma centers (United States and international). Blood was assessed using a verified multimarker RT-qPCR assay (MART-1, MAGE-A3, and GalNAc-T) of melanoma-associated proteins. Cox regression analyses were used to evaluate the prognostic significance of CTC status for disease recurrence and melanoma-specific survival (MSS). RESULTS Individual CTC biomarker detection ranged from 13.4% to 17.5%. There was no association of CTC status (zero to one positive biomarkers v two or more positive biomarkers) with known clinical or pathologic prognostic variables. However, two or more positive biomarkers was significantly associated with worse distant metastasis disease-free survival (hazard ratio [HR] = 2.13, P = .009) and reduced recurrence-free survival (HR = 1.70, P = .046) and MSS (HR = 1.88, P = .043) in a multivariable analysis. CONCLUSION CTC biomarker status is a prognostic factor for recurrence-free survival, distant metastasis disease-free survival, and MSS after CLND in patients with SLN metastasis. This multimarker RT-qPCR analysis may therefore be useful in discriminating patients who may benefit from aggressive adjuvant therapy or stratifying patients for adjuvant clinical trials.
Journal of Investigative Dermatology | 2012
Sojun Hoshimoto; Christine T. Kuo; Kelly K. Chong; Teh-Ling Takeshima; Yoshiki Takei; Michelle W. Li; Sharon K. Huang; Myung-Shin Sim; Donald L. Morton; Dave S.B. Hoon
Aberrations in the methylation status of non-coding genomic repeat DNA sequences and specific gene promoter region are important epigenetic events in melanoma progression. Promoter methylation status in LINE-1 and Absent in melanoma-1(AIM1;6q21) associated with melanoma progression and disease outcome was assessed. LINE-1 and AIM1 methylation status was assessed in paraffin-embedded archival tissues(PEAT)(n=133) and melanoma patients’ serum(n=56). LINE-1 U-Index(hypomethylation) and AIM1 were analyzed in microdissected melanoma PEAT sections. The LINE-1 U-Index of melanoma(n=100) was significantly higher than that of normal skin(n=14) and nevi(n=12)(P=0.0004). LINE-1 U-Index level was elevated with increasing AJCC stage(P<0.0001). AIM1 promoter hypermethylation was found in higher frequency(P=0.005) in metastatic melanoma(65%) than in primary melanomas(38%). When analyzed, high LINE-1 U-Index and/or AIM1 methylation in melanomas were associated with disease-free survival(DFS) and overall survival(OS) in Stage I/II patients (P=0.017, 0.027; respectively). In multivariate analysis, melanoma AIM1 methylation status was a significant prognostic factor of OS(P=0.032). Furthermore, serum unmethylated LINE-1 was at higher levels in both stage III(n=20) and stage IV(n=36) patients compared to healthy donors(n=14)(P=0.022). Circulating methylated AIM1 was detected in patients’ serum and was predictive of OS in Stage IV patients (P=0.009). LINE-1 hypomethylation and AIM1 hypermethylation have prognostic utility in both melanoma patients’ tumors and serum.
Journal of Investigative Dermatology | 2013
Jinhua Wang; Kelly K. Chong; Yoshitaka Nakamura; Linhda Nguyen; Sharon K. Huang; Christine Kuo; Wang Zhang; Hua Yu; Donald L. Morton; Dave S.B. Hoon
B7-H3, a cell surface transmembrane glycoprotein, was assessed for its functional and prognostic role in cutaneous melanoma progression. B7-H3 expression in melanoma cells was shown to be related to specific downstream signal transduction events as well as associated with functional epigenetic activity. B7-H3 expression and prognostic utility was shown by RT-qPCR and IHC analysis on individual melanoma specimens and then verified in clinically annotated melanoma stage III and stage IV metastasis tissue microarrays in a double blind study. B7-H3 mRNA expression was shown to be significantly increased with stage of melanoma(P<0.0001) and significantly associated with melanoma-specific survival(MSS) in both stage III(P<0.0001) and stage IV(P<0.012) melanoma patients. B7-H3 expression was related to migration and invasion; overexpression B7-H3 increased migration and invasion while knockdown of B7-H3 reduced cell migration and invasion. MiR-29c expression was shown to inversely regulate B7-H3 expression. Furthermore, we demonstrated that melanoma B7-H3 expression was correlated to p-STAT3 activity level in melanoma tissues and cell lines. These studies demonstrate that B7-H3 is a significant factor in melanoma progression, and events of metastasis.
Journal of Surgical Oncology | 2011
Dave S.B. Hoon; Robert L. Ferris; Ryo Tanaka; Kelly K. Chong; Catherine Alix-Panabières; Klaus Pantel
The mechanism of metastasis is a complex set of events that build upon each other to achieve successful growth in organ sites beyond the primary tumor. The cumulative events for metastasis of different cancers have both common and specific cancer specific events. This review discusses several key factors in different cancers that are responsible in metastasis, which includes epigenetic regulation of tumor suppressor genes, functional activity of tumor‐related chemokine receptors, and circulating tumor cells. J. Surg. Oncol. 2011;103:508–517.
Cancer Letters | 2014
Edward S. Greenberg; Kelly K. Chong; Kelly T. Huynh; Ryo Tanaka; Dave S.B. Hoon
Epigenetic aberrations have been associated with cutaneous melanoma tumorigenesis and progression including dysregulated DNA gene promoter region methylation, histone modification, and microRNA. Several of these major epigenetic aberrations have been developed into biomarkers. Epigenetic biomarkers can be detected in tissue and in blood as circulating DNA in melanoma patients. There is strong evidence that biomarkers in cutaneous melanoma will have an important role as companions to therapeutics and overall patient management. Important progress has been made in epigenetic melanoma biomarker development and verification of clinical utility, and this review discusses some of the key current developments and existing challenges.
Journal of Investigative Dermatology | 2015
Laurent Lessard; Michelle Liu; Diego M. Marzese; Hongwei Wang; Kelly K. Chong; Neal P. Kawas; Nicholas C. Donovan; Eiji Kiyohara; Sandy C. Hsu; Nellie Nelson; Sivan Izraely; Orit Sagi-Assif; Isaac P. Witz; Xiao-Jun Ma; Yuling Luo; Dave S.B. Hoon
In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long non-coding RNAs in melanoma progression. We hypothesized that copy number alterations of intergenic non-protein coding domains could help identify long intergenic non-coding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and up-regulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC stage III lymph node metastasis. Moreover, siRNA knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma.