Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly L. Arnett is active.

Publication


Featured researches published by Kelly L. Arnett.


Immunity | 1997

Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors.

Nicholas M. Valiante; Markus Uhrberg; Heather G. Shilling; Kristin Lienert-Weidenbach; Kelly L. Arnett; Annalisa D'Andrea; Joseph H. Phillips; Lewis L. Lanier; Peter Parham

The expression of KIR and CD94:NKG2 receptors was determined for more than 100 natural killer (NK) cell clones obtained from two blood donors who differ in their HLA class I and KIR genes. More than 98% of the clones were inhibited by individual autologous class I allotypes, and every clone was inhibited by the combination of autologous allotypes. The patterns of inhibition correlate with expression of inhibitory receptors of defined specificity. One donor possesses three class I ligands for KIR, and a majority of NK cells use KIR as their inhibitory receptor; the second donor possesses only a single ligand for KIR, and a majority of NK cells use the more broadly reactive CD94:NKG2a as their inhibitory receptor. Because of these differences, the first donor has subpopulations of NK cells that kill cells of the second donor, whereas the NK cells of the second donor are universally tolerant of cells from the first donor.


Immunological Reviews | 1995

The Origins of HLA‐A,B,C Polymorphism

Peter Parham; Erin J. Adams; Kelly L. Arnett

Polymorphism of HLA-A,B and C genes determines the repertoire of receptor specificities expressed by cytolytic CDS T lymphocytes (CTL) and the response of natural killer (NK) cells. In the performance of these functions HLA-A,B,C heavy chains interact with ^i-microglobulin (/A-m), a multitude of peptides of 810 amino acids, diverse T-cell receptors (TcR), the CD8 co-receptor, class I receptors of NK cells, the TAP peptide transporter, and the chaperonins calnexin and heavy chain binding protein (BIP). Polymorphism modulates all these interactions and in aggregate affects profoundly the cytolytic lymphocyte response in persons with different HLA-A,B,C types. Pairwise comparison of unrelated individuals in modern human populations shows they rarely have the same HLA-A,B,C type. As a consequence the human cytoiytic lymphocyte response to infectious agents, transformed cells, transplanted tissues and autoantigens varies from one person to another. There is no wild-type the normal individual on which research can be focused. So, to gain understanding of the human immune response and facilitate the prevention and cure of disease, it becomes necessary to study all HLA-A,B,C types. The further this endeavor has been pursued the greater the diversity of HLA-A,B and C that has been found. Although a monumental headache for the biological or clinical reductionist, the tremendous diversity of HLA-A,B,C make these genes wonderful tools for those interested in the evolution of human populations and their immune relationship to diverse pathogens.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma

Nicholas Wang; Zachary Sanborn; Kelly L. Arnett; Laura J. Bayston; Wilson Liao; Charlotte M. Proby; Irene M. Leigh; Eric A. Collisson; Patricia B. Gordon; Lakshmi Jakkula; Sally D. Pennypacker; Yong Zou; Mimansa Sharma; Jeffrey P. North; Swapna Vemula; Theodora M. Mauro; Isaac M. Neuhaus; Philip E. LeBoit; Joe S Hur; Kyung-Hee Park; Nam Huh; Pui-Yan Kwok; Sarah T. Arron; Pierre P. Massion; Allen E. Bale; David Haussler; James E. Cleaver; Joe W. Gray; Paul T. Spellman; Andrew P. South

Squamous cell carcinomas (SCCs) are one of the most frequent forms of human malignancy, but, other than TP53 mutations, few causative somatic aberrations have been identified. We identified NOTCH1 or NOTCH2 mutations in ∼75% of cutaneous SCCs and in a lesser fraction of lung SCCs, defining a spectrum for the most prevalent tumor suppressor specific to these epithelial malignancies. Notch receptors normally transduce signals in response to ligands on neighboring cells, regulating metazoan lineage selection and developmental patterning. Our findings therefore illustrate a central role for disruption of microenvironmental communication in cancer progression. NOTCH aberrations include frameshift and nonsense mutations leading to receptor truncations as well as point substitutions in key functional domains that abrogate signaling in cell-based assays. Oncogenic gain-of-function mutations in NOTCH1 commonly occur in human T-cell lymphoblastic leukemia/lymphoma and B-cell chronic lymphocytic leukemia. The bifunctional role of Notch in human cancer thus emphasizes the context dependency of signaling outcomes and suggests that targeted inhibition of the Notch pathway may induce squamous epithelial malignancies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells

Hongfang Wang; James Zou; Bo Zhao; Eric Johannsen; Todd Ashworth; Hoifung Wong; Jonathan Schug; Stephen C. Blacklow; Kelly L. Arnett; Bradley E. Bernstein; Elliott Kieff

Notch1 regulates gene expression by associating with the DNA-binding factor RBPJ and is oncogenic in murine and human T-cell progenitors. Using ChIP-Seq, we find that in human and murine T-lymphoblastic leukemia (TLL) genomes Notch1 binds preferentially to promoters, to RBPJ binding sites, and near imputed ZNF143, ETS, and RUNX sites. ChIP-Seq confirmed that ZNF143 binds to ∼40% of Notch1 sites. Notch1/ZNF143 sites are characterized by high Notch1 and ZNF143 signals, frequent cobinding of RBPJ (generally through sites embedded within ZNF143 motifs), strong promoter bias, and relatively low mean levels of activating chromatin marks. RBPJ and ZNF143 binding to DNA is mutually exclusive in vitro, suggesting RBPJ/Notch1 and ZNF143 complexes exchange on these sites in cells. K-means clustering of Notch1 binding sites and associated motifs identified conserved Notch1-RUNX, Notch1-ETS, Notch1-RBPJ, Notch1-ZNF143, and Notch1-ZNF143-ETS clusters with different genomic distributions and levels of chromatin marks. Although Notch1 binds mainly to gene promoters, ∼75% of direct target genes lack promoter binding and are presumably regulated by enhancers, which were identified near MYC, DTX1, IGF1R, IL7R, and the GIMAP cluster. Human and murine TLL genomes also have many sites that bind only RBPJ. Murine RBPJ-only sites are highly enriched for imputed REST (a DNA-binding transcriptional repressor) sites, whereas human RPBJ-only sites lack REST motifs and are more highly enriched for imputed CREB sites. Thus, there is a conserved network of cis-regulatory factors that interacts with Notch1 to regulate gene expression in TLL cells, as well as unique classes of divergent RBPJ-only sites that also likely regulate transcription.


Journal of Cell Science | 2008

The molecular logic of Notch signaling--a structural and biochemical perspective.

Wendy R. Gordon; Kelly L. Arnett; Stephen C. Blacklow

The Notch signaling pathway constitutes an ancient and conserved mechanism for cell-cell communication in metazoan organisms, and has a central role both in development and in adult tissue homeostasis. Here, we summarize structural and biochemical advances that contribute new insights into three central facets of canonical Notch signal transduction: (1) ligand recognition, (2) autoinhibition and the switch from protease resistance to protease sensitivity, and (3) the mechanism of nuclear-complex assembly and the induction of target-gene transcription. These advances set the stage for future mechanistic studies investigating ligand-dependent activation of Notch receptors, and serve as a foundation for the development of mechanism-based inhibitors of signaling in the treatment of cancer and other diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2011

T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling

Kristine Germar; Marei Dose; Tassos Konstantinou; Jiangwen Zhang; Hongfang Wang; Camille Lobry; Kelly L. Arnett; Stephen C. Blacklow; Iannis Aifantis; Fotini Gounari

Although transcriptional programs associated with T-cell specification and commitment have been described, the functional hierarchy and the roles of key regulators in structuring/orchestrating these programs remain unclear. Activation of Notch signaling in uncommitted precursors by the thymic stroma initiates the T-cell differentiation program. One regulator first induced in these precursors is the DNA-binding protein T-cell factor 1 (Tcf-1), a T-cell–specific mediator of Wnt signaling. However, the specific contribution of Tcf-1 to early T-cell development and the signals inducing it in these cells remain unclear. Here we assign functional significance to Tcf-1 as a gatekeeper of T-cell fate and show that Tcf-1 is directly activated by Notch signals. Tcf-1 is required at the earliest phase of T-cell determination for progression beyond the early thymic progenitor stage. The global expression profile of Tcf-1–deficient progenitors indicates that basic processes of DNA metabolism are down-regulated in its absence, and the blocked T-cell progenitors become abortive and die by apoptosis. Our data thus add an important functional relationship to the roadmap of T-cell development.


Proceedings of the National Academy of Sciences of the United States of America | 2014

NOTCH1–RBPJ complexes drive target gene expression through dynamic interactions with superenhancers

Hongfang Wang; Chongzhi Zang; Len Taing; Kelly L. Arnett; Wong Yj; Stephen C. Blacklow; Xueqiao Liu

Significance Studies focused on understanding how transcription factors control gene expression have shown that transcription-factor binding sites generally greatly exceed the number of regulated genes, making it challenging to identify functional binding sites. Using Notch pathway inhibitors, we identified a subset of Notch-binding sites in leukemia cell genomes that are dynamic, changing in occupancy relatively rapidly when Notch signaling is perturbed. Dynamic Notch sites are highly associated with genes that are directly regulated by Notch and mainly lie in large regulatory switches termed superenhancers, which control genes with key roles in development and cancer. This work links Notch signaling to superenhancers and suggests that assessment of transcription factor–genome dynamics can help to identify functionally important regulatory sites. The main oncogenic driver in T-lymphoblastic leukemia is NOTCH1, which activates genes by forming chromatin-associated Notch transcription complexes. Gamma-secretase-inhibitor treatment prevents NOTCH1 nuclear localization, but most genes with NOTCH1-binding sites are insensitive to gamma-secretase inhibitors. Here, we demonstrate that fewer than 10% of NOTCH1-binding sites show dynamic changes in NOTCH1 occupancy when T-lymphoblastic leukemia cells are toggled between the Notch-on and -off states with gamma-secretase inhibiters. Dynamic NOTCH1 sites are functional, being highly associated with Notch target genes, are located mainly in distal enhancers, and frequently overlap with RUNX1 binding. In line with the latter association, we show that expression of IL7R, a gene with key roles in normal T-cell development and in T-lymphoblastic leukemia, is coordinately regulated by Runx factors and dynamic NOTCH1 binding to distal enhancers. Like IL7R, most Notch target genes and associated dynamic NOTCH1-binding sites cooccupy chromatin domains defined by constitutive binding of CCCTC binding factor, which appears to restrict the regulatory potential of dynamic NOTCH1 sites. More remarkably, the majority of dynamic NOTCH1 sites lie in superenhancers, distal elements with exceptionally broad and high levels of H3K27ac. Changes in Notch occupancy produces dynamic alterations in H3K27ac levels across the entire breadth of superenhancers and in the promoters of Notch target genes. These findings link regulation of superenhancer function to NOTCH1, a master regulatory factor and potent oncoprotein in the context of immature T cells, and delineate a generally applicable roadmap for identifying functional Notch sites in cellular genomes.


Nature Structural & Molecular Biology | 2010

Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes.

Kelly L. Arnett; Matthew R. Hass; Debbie G. McArthur; Ma. Xenia G. Ilagan; Raphael Kopan; Stephen C. Blacklow

Ligand-induced proteolysis of Notch produces an intracellular effector domain that transduces essential signals by regulating the transcription of target genes. This function relies on the formation of transcriptional activation complexes that include intracellular Notch, a Mastermind co-activator and the transcription factor CSL bound to cognate DNA. These complexes form higher-order assemblies on paired, head-to-head CSL recognition sites. Here we report the X-ray structure of a dimeric human Notch1 transcription complex loaded on the paired site from the human HES1 promoter. The small interface between the Notch ankyrin domains could accommodate DNA bending and untwisting to allow a range of spacer lengths between the two sites. Cooperative dimerization occurred on the human and mouse Hes5 promoters at a sequence that diverged from the CSL-binding consensus at one of the sites. These studies reveal how promoter organizational features control cooperativity and, thus, the responsiveness of different promoters to Notch signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia

Yumi Yashiro-Ohtani; Hongfang Wang; Chongzhi Zang; Kelly L. Arnett; Will Bailis; Yugong Ho; Birgit Knoechel; Claudia Lanauze; Lumena Louis; Katherine S. Forsyth; Sujun Chen; Yoonjie Chung; Jonathan Schug; Gerd A. Blobel; Stephen A. Liebhaber; Bradley E. Bernstein; Stephen C. Blacklow; Xiaole Shirley Liu

Significance The protooncogene c-Myc (Myc) is an oncogenic driver in many cancers, but is difficult to target directly with drugs. An alternative strategy is to use drugs that inhibit factors that regulate Myc expression. Notch drives Myc expression in most T-cell leukemias, but clinical trials of Notch inhibitors have been disappointing, possibly because cells emerge that express Myc in a Notch-independent fashion. Here we identify the genomic switches that regulate Myc expression in the Notch-inhibitor–sensitive and –resistant states. Our findings suggest that Notch inhibitor resistance occurs through a “switch swap” that relieves Notch dependency while increasing dependency on a different factor, bromodomain containing 4 (Brd4). These studies provide a rationale for targeting Myc in T cell leukemias with combinations of Notch and Brd4 inhibitors. Notch is needed for T-cell development and is a common oncogenic driver in T-cell acute lymphoblastic leukemia. The protooncogene c-Myc (Myc) is a critical target of Notch in normal and malignant pre-T cells, but how Notch regulates Myc is unknown. Here, we identify a distal enhancer located >1 Mb 3′ of human and murine Myc that binds Notch transcription complexes and physically interacts with the Myc proximal promoter. The Notch1 binding element in this region activates reporter genes in a Notch-dependent, cell-context–specific fashion that requires a conserved Notch complex binding site. Acute changes in Notch activation produce rapid changes in H3K27 acetylation across the entire enhancer (a region spanning >600 kb) that correlate with Myc expression. This broad Notch-influenced region comprises an enhancer region containing multiple domains, recognizable as discrete H3K27 acetylation peaks. Leukemia cells selected for resistance to Notch inhibitors express Myc despite epigenetic silencing of enhancer domains near the Notch transcription complex binding sites. Notch-independent expression of Myc in resistant cells is highly sensitive to inhibitors of bromodomain containing 4 (Brd4), a change in drug sensitivity that is accompanied by preferential association of the Myc promoter with more 3′ enhancer domains that are strongly dependent on Brd4 for function. These findings indicate that altered long-range enhancer activity can mediate resistance to targeted therapies and provide a mechanistic rationale for combined targeting of Notch and Brd4 in leukemia.


Immunogenetics | 1998

The Bw4/Bw6 difference between HLA-B*0802 and HLA-B*0801 changes the peptides endogenously bound and the stimulation of alloreactive T cells

Kelly L. Arnett; W. Huang; Nicholas M. Valiante; Linda D. Barber; Peter Parham

Abstract HLA-B*0801 is unique among HLA-B allotypes in having dominant amino acid anchors at positions 3 and 5 of the peptide-binding motif. HLA-B*0802 is a variant of HLA-B*0801 in which the Bw6 sequence motif is replaced by a Bw4 sequence motif. This change, involving substitutions at positions 77, 80, 81, 82, and 83 of the B*08 heavy chain, is probably the result of a single evolutionary event of interallelic conversion. Moreover, the difference between B*0802 and B*0801 is sufficient to stimulate a cytotoxic T-cell response. To assess further the functional impact of the Bw4 motif on a B8 background, we compared the peptide-binding specificity of the B*0801 and B*0802 allotypes by sequencing the mixture of peptides endogenously bound to B*0802 and 12 individual peptides purified from that mixture. The HLA-B*0802 allotype, while able to bind some peptides bound by B*0801, has a broader repertoire of endogenously bound peptides than B*0801: the peptides bound by B*0802 are more variable in length and exhibit greater diversity in the carboxyl-terminal amino acid which interacts with the F pocket.

Collaboration


Dive into the Kelly L. Arnett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongfang Wang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge