Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly L. Classic is active.

Publication


Featured researches published by Kelly L. Classic.


Biomaterials | 2008

Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering

Diederik H. R. Kempen; Lichun Lu; Teresa E. Hefferan; Laura B. Creemers; Avudaiappan Maran; Kelly L. Classic; Wouter J.A. Dhert; Michael J. Yaszemski

In this study, we investigated the in vitro and in vivo biological activities of bone morphogenetic protein 2 (BMP-2) released from four sustained delivery vehicles for bone regeneration. BMP-2 was incorporated into (1) a gelatin hydrogel, (2) poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a gelatin hydrogel, (3) microspheres embedded in a poly(propylene fumarate) (PPF) scaffold and (4) microspheres embedded in a PPF scaffold surrounded by a gelatin hydrogel. A fraction of the incorporated BMP-2 was radiolabeled with (125)I to determine its in vitro and in vivo release profiles. The release and bioactivity of BMP-2 were tested weekly over a period of 12 weeks in preosteoblast W20-17 cell line culture and in a rat subcutaneous implantation model. Outcome parameters for in vitro and in vivo bioactivities of the released BMP-2 were alkaline phosphatase (AP) induction and bone formation, respectively. The four implant types showed different in vitro release profiles over the 12-week period, which changed significantly upon implantation. The AP induction by BMP-2 released from gelatin implants showed a loss in bioactivity after 6 weeks in culture, while the BMP-2 released from the other implants continued to show bioactivity over the full 12-week period. Micro-CT and histological analysis of the delivery vehicles after 6 weeks of implantation showed significantly more bone in the microsphere/PPF scaffold composites (Implant 3, p<0.02). After 12 weeks, the amount of newly formed bone in the microsphere/PPF scaffolds remained significantly higher than that in the gelatin and microsphere/gelatin hydrogels (p<0.001), however, there was no statistical difference compared to the microsphere/PPF/gelatin composite. Overall, the results from this study show that BMP-2 could be incorporated into various bone tissue engineering composites for sustained release over a prolonged period of time with retention of bioactivity.


American Journal of Roentgenology | 2010

Sodium Iodide Symporter (NIS)-Mediated Radiovirotherapy for Pancreatic Cancer

Alan R. Penheiter; Troy R. Wegman; Kelly L. Classic; David Dingli; Claire E. Bender; Stephen J. Russell; Stephanie K. Carlson

OBJECTIVE We have previously shown the therapeutic efficacy of an engineered oncolytic measles virus expressing the sodium iodide symporter reporter gene (MV-NIS) in mice with human pancreatic cancer xenografts. The goal of this study was to determine the synergy between MV-NIS-induced oncolysis and NIS-mediated (131)I radiotherapy in this tumor model. MATERIALS AND METHODS Subcutaneous human BxPC-3 pancreatic tumors were injected twice with MV-NIS. Viral infection, NIS expression, and intratumoral iodide uptake were quantitated with (123)I micro-SPECT/CT. Mice with MV-NIS-infected tumors were treated with 0, 37, or 74 MBq (131)I and monitored for tumor progression and survival. Additional studies were performed with stable NIS-expressing tumors (BxPC-3-NIS) treated with 0, 3.7, 18.5, 37, or 74 MBq of (131)I. RESULTS Mice treated with intratumoral MV-NIS exhibited significant tumor growth delay (p < 0.01) and prolonged survival (p = 0.02) compared with untreated mice. Synergy between MV-NIS-induced oncolysis and NIS-mediated (131)I ablation was not seen; however, a significant correlation was observed between NIS-mediated intratumoral iodide localization (% ID/g) and peak tumor volume reduction (p = 0.04) with combination MV-NIS and (131)I therapy. Stably transduced NIS-expressing BxPC-3 tumors exhibited rapid regression with > or = 18.5 MBq (131)I. CONCLUSION Delivery of (131)I radiotherapy to NIS-expressing tumors can be optimized using micro-SPECT/CT imaging guidance. Significant hurdles exist for NIS as a therapeutic gene for combined radiovirotherapy in this human pancreatic cancer model. The lack of synergy observed with MV-NIS and (131)I in this model was not due to a lack of radiosensitivity but rather to a nonuniform intratumoral distribution of MV-NIS infection.


American Journal of Roentgenology | 2009

Quantitative Molecular Imaging of Viral Therapy for Pancreatic Cancer Using an Engineered Measles Virus Expressing the Sodium-Iodide Symporter Reporter Gene

Stephanie K. Carlson; Kelly L. Classic; Elizabeth M. Hadac; David Dingli; Claire E. Bender; Bradley J. Kemp; Stephen J. Russell

OBJECTIVE Our objectives were to, first, determine the oncolytic potential of an engineered measles virus expressing the sodium-iodide symporter gene (MV-NIS) for intratumoral (i.t.) therapy of pancreatic cancer and, second, evaluate NIS as a reporter gene for in vivo monitoring and quantitation of MV-NIS delivery, viral spread, and gene expression in this tumor model. MATERIALS AND METHODS Cultured human pancreatic cancer cells were infected with MV-NIS. Light microscopy, cell viability, and iodide uptake assays were used to confirm viral infection and NIS gene expression and function in vitro. Human pancreatic tumor xenografts were established in mice and infected via i.t. MV-NIS injections. NIS-mediated i.t. iodide uptake was quantitated by (123)I micro-SPECT/CT. i.t. MV-NIS infection was confirmed by immunohistochemistry of excised pancreatic xenografts. The oncolytic efficacy of MV-NIS was determined by measurement of tumor growth and mouse survival. RESULTS Infection of human pancreatic cancer cell lines with MV-NIS in vitro resulted in syncytia formation, marked iodide uptake, and ultimately cell death. Tumor xenografts infected with MV-NIS concentrated radioiodine, allowing serial quantitative imaging with (123)I micro-SPECT/CT. i.t. MV-NIS therapy of human pancreatic cancer xenografts resulted in a significant reduction in tumor volume and increased survival time of the treated mice compared with the control mice. CONCLUSION MV-NIS efficiently infects human pancreatic tumor cells and results in sufficient radioiodine uptake to enable noninvasive serial imaging and quantitation of the intensity, distribution, and time course of NIS gene expression. MV-NIS also shows oncolytic activity in human pancreatic cancer xenografts: Tumor growth is reduced and survival is increased in mice treated with the virus.


Molecular Imaging and Biology | 2006

In Vivo Quantitation of Intratumoral Radioisotope Uptake Using Micro-Single Photon Emission Computed Tomography/Computed Tomography

Stephanie K. Carlson; Kelly L. Classic; Elizabeth M. Hadac; Claire E. Bender; Bradley J. Kemp; Val J. Lowe; Tanya L. Hoskin; Stephen J. Russell

PurposeThis study was undertaken to determine the ability of micro-single photon emission computed tomography (micro-SPECT)/computed tomography (CT) to accurately quantitate intratumoral radioisotope uptake in vivo and to compare these measurements with planar imaging and micro-SPECT imaging alone.ProceduresHuman pancreatic cancer xenografts were established in 10 mice. Intratumoral radioisotope uptake was achieved via intratumoral injection of an attenuated measles virus vector expressing the NIS gene (MV-NIS). On various days after MV-NIS injection, 123I planar and micro-SPECT/CT imaging was performed. Tumor activity was determined by dose calibrator measurements and region-of-interest (ROI) image analysis. Agreement and reproducibility of tumor activity measurements were assessed by Bland–Altman plots and Lin’s concordance correlation coefficient (CCC).ResultsIntratumoral radioisotope uptake was detected in all mice. Scatterplots demonstrate strong agreement (CCC = 0.93) between micro-SPECT/CT ROI image analysis and dose calibrator tumor activity measurements. The differences between dose calibrator activity measurements and those obtained with ROI image analysis of micro-SPECT alone and planar imaging are less accurate and more variable (CCC = 0.84 and 0.78, respectively).ConclusionsMicro-SPECT/CT can be used to accurately quantify intratumoral radioisotope uptake in vivo and is more reliable than planar or micro-SPECT imaging alone.


Journal of Controlled Release | 2009

Non-invasive monitoring of BMP-2 retention and bone formation in composites for bone tissue engineering using SPECT/CT and scintillation probes.

Diederik H. R. Kempen; Michael J. Yaszemski; Andras Heijink; Theresa E. Hefferan; Laura B. Creemers; Jason Britson; Avudaiappan Maran; Kelly L. Classic; Wouter J.A. Dhert; Lichun Lu

Non-invasive imaging can provide essential information for the optimization of new drug delivery-based bone regeneration strategies to repair damaged or impaired bone tissue. This study investigates the applicability of nuclear medicine and radiological techniques to monitor growth factor retention profiles and subsequent effects on bone formation. Recombinant human bone morphogenetic protein-2 (BMP-2, 6.5 microg/scaffold) was incorporated into a sustained release vehicle consisting of poly(lactic-co-glycolic acid) microspheres embedded in a poly(propylene fumarate) scaffold surrounded by a gelatin hydrogel and implanted subcutaneously and in 5-mm segmental femoral defects in 9 rats for a period of 56 days. To determine the pharmacokinetic profile, BMP-2 was radiolabeled with (125)I and the local retention of (125)I-BMP-2 was measured by single photon emission computed tomography (SPECT), scintillation probes and ex vivo scintillation analysis. Bone formation was monitored by micro-computed tomography (microCT). The scaffolds released BMP-2 in a sustained fashion over the 56-day implantation period. A good correlation between the SPECT and scintillation probe measurements was found and there were no significant differences between the non-invasive and ex-vivo counting method after 8 weeks of follow up. SPECT analysis of the total body and thyroid counts showed a limited accumulation of (125)I within the body. Ectopic bone formation was induced in the scaffolds and the femur defects healed completely. In vivo microCT imaging detected the first signs of bone formation at days 14 and 28 for the orthotopic and ectopic implants, respectively, and provided a detailed profile of the bone formation rate. Overall, this study clearly demonstrates the benefit of applying non-invasive techniques in drug delivery-based bone regeneration strategies by providing detailed and reliable profiles of the growth factor retention and bone formation at different implantation sites in a limited number of animals.


Health Physics | 1991

Hand dose measurements in interventional radiology

Joel P. Felmlee; Paul F. McGough; Richard L. Morin; Kelly L. Classic

Measurements of radiation dose to the hand were conducted using TLD ring badges for individual interventional radiology cases. Results from over 30 examinations (including transhepatic cholangiograms and biliary and nephrostomy procedures) conducted by four radiologists using identical equipment show an average hand dose of 1.5 mGy (150 mrad) per procedure. Hand dose varied inversely with distance from the patient. Due to variable hand positions during clinical examinations, fluoroscopic time was not found to be a good indicator of hand dose.


Journal of Controlled Release | 2008

Non-invasive screening method for simultaneous evaluation of in vivo growth factor release profiles from multiple ectopic bone tissue engineering implants

Diederik H. R. Kempen; Lichun Lu; Kelly L. Classic; Theresa E. Hefferan; Laura B. Creemers; Avudaiappan Maran; Wouter J.A. Dhert; Michael J. Yaszemski

The purpose of this study was to develop and validate a screening method based on scintillation probes for the simultaneous evaluation of in vivo growth factor release profiles of multiple implants in the same animal. First, we characterized the scintillation probes in a series of in vitro experiments to optimize the accuracy of the measurement setup. The scintillation probes were found to have a strong geometric dependence and experience saturation effects at high activities. In vitro simulation of 4 subcutaneous limb implants in a rat showed minimal interference of surrounding implants on local measurements at close to parallel positioning of the probes. These characteristics were taken into consideration for the design of the probe setup and in vivo experiment. The measurement setup was then validated in a rat subcutaneous implantation model using 4 different sustained release carriers loaded with (125)I-BMP-2 per animal. The implants were removed after 42 or 84 days of implantation, for comparison of the non-invasive method to ex vivo radioisotope counting. The non-invasive method demonstrated a good correlation with the ex vivo counting method at both time-points of all 4 carriers. Overall, this study showed that scintillation probes could be successfully used for paired measurement of 4 release profiles with minimal interference of the surrounding implants, and may find use as non-invasive screening tools for various drug delivery applications.


Health Physics | 2009

Potential for contamination during removal of radioactive seeds from surgically excised tissue.

Kelly L. Classic; J B. Brunette; S K. Carlson

The purpose of this study was to determine whether the use of a scalpel or electrocautery to remove radioactive sealed sources (“seeds”) from surgically excised tissue could damage the seed and cause it to leak its radioactive contents. Attempts were made to cut or burn Oncura Model 6711 non-radioactive seeds while in pig muscle or on a stainless steel plate. Additionally, one active 125I seed was purposely charred using pressure with an electrocautery knife to see whether the casing could be damaged. Electron microscopy scanning was performed on the dummy seeds to determine if the integrity of the metal casing had been compromised. Two types of leak tests were performed on the active seed to verify the presence or absence of loose contamination. The seed casing was not damaged from either use of a scalpel or electrocautery when the seed was in tissue. The active seed was not found to be leaking after applying pressure with an electrocautery knife while the seed was on a stainless steel plate. We conclude that removal of active Model 6711 seeds from surgically excised tissue can be done safely with a scalpel or electrocautery because constant, firm pressure cannot be applied to the seed. This is likely true for seeds made of similar materials.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Experimental Cardiac Radiation Exposure Induces Ventricular Diastolic Dysfunction with Preserved Ejection Fraction

Hirofumi Saiki; Gilles Moulay; Adam J. Guenzel; Weibin Liu; Teresa Decklever; Kelly L. Classic; Linh Pham; Horng H. Chen; John C. Burnett; Stephen J. Russell; Margaret M. Redfield

Breast cancer radiotherapy increases the risk of heart failure with preserved ejection fraction (HFpEF). Cardiomyocytes are highly radioresistant, but radiation specifically affects coronary microvascular endothelial cells, with subsequent microvascular inflammation and rarefaction. The effects of radiation on left ventricular (LV) diastolic function are poorly characterized. We hypothesized that cardiac radiation exposure may result in diastolic dysfunction without reduced EF. Global cardiac expression of the sodium-iodide symporter (NIS) was induced by cardiotropic gene (adeno-associated virus serotype 9) delivery to 5-wk-old rats. SPECT/CT (125I) measurement of cardiac iodine uptake allowed calculation of the 131I doses needed to deliver 10- or 20-Gy cardiac radiation at 10 wk of age. Radiated (Rad; 10 or 20 Gy) and control rats were studied at 30 wk of age. Body weight, blood pressure, and heart rate were similar in control and Rad rats. Compared with control rats, Rad rats had impaired exercise capacity, increased LV diastolic stiffness, impaired LV relaxation, and elevated filling pressures but similar LV volume, EF, end-systolic elastance, preload recruitable stroke work, and peak +dP/dt Pathology revealed reduced microvascular density, mild concentric cardiomyocyte hypertrophy, and increased LV fibrosis in Rad rats compared with control rats. In the Rad myocardium, oxidative stress was increased and in vivo PKG activity was decreased. Experimental cardiac radiation exposure resulted in diastolic dysfunction without reduced EF. These data provide insight into the association between cardiac radiation exposure and HFpEF risk and lend further support for the importance of inflammation-related coronary microvascular compromise in HFpEF.NEW & NOTEWORTHY Cardiac radiation exposure during radiotherapy increases the risk of heart failure with preserved ejection fraction. In a novel rodent model, cardiac radiation exposure resulted in coronary microvascular rarefaction, oxidative stress, impaired PKG signaling, myocardial fibrosis, mild cardiomyocyte hypertrophy, left ventricular diastolic dysfunction, and elevated left ventricular filling pressures despite preserved ejection fraction.


Retina-the Journal of Retinal and Vitreous Diseases | 2012

Radiation dose to the surgeon during plaque brachytherapy

Kelly L. Classic; Keith M. Furutani; Scott L. Stafford; Jose S. Pulido

Purpose: To evaluate the radiation dose to a surgeons hands during 125I eye plaque procedures. Methods: Sixteen consecutive patients with uveal melanomas were scheduled for eye plaque brachytherapy. The same surgeon wore thermoluminescent dosimeters on the dominant index finger and thumb while placing and removing the eye plaque to measure radiation dose. Additional laboratory experiments were performed to measure unobstructed (by surgical gloves or other parts of the hand) radiation exposure from a plaque. Results: Hand radiation doses during eye plaque brachytherapy are very low, but measurable, with plaques containing an average of 1.3 GBq of 125I. Conclusion: Using these data, a surgeon would need to perform more than 1,000 cases each year to approach or exceed the annual regulatory radiation dose limits for the extremities.

Collaboration


Dive into the Kelly L. Classic's collaboration.

Researchain Logo
Decentralizing Knowledge