Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly L. Robertson is active.

Publication


Featured researches published by Kelly L. Robertson.


Expert Opinion on Drug Delivery | 2009

Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery.

James B. Delehanty; Kelly Boeneman; Christopher E. Bradburne; Kelly L. Robertson; Igor L. Medintz

Nanoparticle-mediated drug delivery (NMDD) is an emerging research area that seeks to address many of the pharmacokinetic issues encountered with traditional systemically administered drug therapies. Although the field is still in its infancy, recent research has already highlighted the potential for improved drug delivery and targeted therapeutics; however, the real promise lies in combining drug therapy with diagnostic imaging, nucleic acid delivery/gene therapy and/or biosensing applications all in one engineered nanoparticle vector. In this review, the authors discuss the unique contributions that luminescent semiconductor nanocrystals or quantum dots (QDs) offer for NMDD, how they can function as a powerful nanoscale platform to understand this process at its most basic level, and even provide drug-related properties in certain circumstances. Selected examples from the current literature are utilized to describe both their potential and the contributions they have already made towards the design and implementation of NMDD vectors. Important related issues such as QD biofunctionalization and toxicity are also discussed. The paper concludes with a perspective of how this field can be expected to develop in the future.


Analytical Biochemistry | 2009

LNA flow-FISH: a flow cytometry-fluorescence in situ hybridization method to detect messenger RNA using locked nucleic acid probes.

Kelly L. Robertson; Dzung C. Thach

We present a novel method using flow cytometry-fluorescence in situ hybridization (flow-FISH) to detect specific messenger RNA (mRNA) in suspended cells using locked nucleic acid (LNA)-modified oligonucleotide probes. beta-Actin mRNA was targeted in whole A549 epithelial cells by hybridization with a biotinylated, LNA-modified probe. The LNA bound to beta-actin was then stained using phycoerythrin-conjugated streptavidin and detected by flow cytometry. Shifts in fluorescence signal intensity between the beta-actin LNA probe and a biotinylated, nonspecific control LNA were used to determine optimal conditions for this type of flow-FISH. Multiple conditions for permeabilization and hybridization were tested, and it was found that conditions using 3 microg/ml of proteinase K for permeabilization and 90 min hybridization at 60 degrees C with buffer containing 50% formamide allow cells containing the LNA-bound mRNA to be detected and differentiated from the control LNA with high confidence (< 14% overlap between curves). This combined method, called LNA flow-FISH, can be used for detection and quantification of other RNA species as well as for telomerase measurement and detection.


PLOS ONE | 2012

Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

Kelly L. Robertson; Anahita Mostaghim; Christina A. Cuomo; Carissa M. Soto; Nikolai Lebedev; Robert F. Bailey; Zheng Wang

Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation.


PLOS ONE | 2012

Function and Regulation of Vibrio campbellii Proteorhodopsin: Acquired Phototrophy in a Classical Organoheterotroph

Zheng Wang; Thomas J. O'Shaughnessy; Carissa M. Soto; Amir M. Rahbar; Kelly L. Robertson; Nikolai Lebedev; Gary J. Vora

Proteorhodopsins (PRs) are retinal-binding photoproteins that mediate light-driven proton translocation across prokaryotic cell membranes. Despite their abundance, wide distribution and contribution to the bioenergy budget of the marine photic zone, an understanding of PR function and physiological significance in situ has been hampered as the vast majority of PRs studied to date are from unculturable bacteria or culturable species that lack the tools for genetic manipulation. In this study, we describe the presence and function of a horizontally acquired PR and retinal biosynthesis gene cluster in the culturable and genetically tractable bioluminescent marine bacterium Vibrio campbellii. Pigmentation analysis, absorption spectroscopy and photoinduction assays using a heterologous over-expression system established the V. campbellii PR as a functional green light absorbing proton pump. In situ analyses comparing PR expression and function in wild type (WT) V. campbellii with an isogenic ΔpR deletion mutant revealed a marked absence of PR membrane localization, pigmentation and light-induced proton pumping in the ΔpR mutant. Comparative photoinduction assays demonstrated the distinct upregulation of pR expression in the presence of light and PR-mediated photophosphorylation in WT cells that resulted in the enhancement of cellular survival during respiratory stress. In addition, we demonstrate that the master regulator of adaptive stress response and stationary phase, RpoS1, positively regulates pR expression and PR holoprotein pigmentation. Taken together, the results demonstrate facultative phototrophy in a classical marine organoheterotrophic Vibrio species and provide a salient example of how this organism has exploited lateral gene transfer to further its adaptation to the photic zone.


Bioconjugate Chemistry | 2011

ENGINEERED T4 VIRAL NANOPARTICLES FOR CELLULAR IMAGING AND FLOW CYTOMETRY

Kelly L. Robertson; Carissa M. Soto; Marie J. Archer; Onyekachi Odoemene; Jinny L. Liu

Viruses are of particular interest as scaffolds for biotechnology applications given their wide range of shapes and sizes and the possibility to modify them with a variety of functional moieties to produce useful virus-based nanoparticles (VNPs). In order to develop functional VNPs for cell imaging and flow cytometry applications, we used the head of the T4 bacteriophage as a scaffold for bioconjugation of fluorescent dyes. Bacteriophage T4 is a double-stranded DNA virus with an elongated icosahedron head and a contractile tail. The head is ∼100 nm in length and ∼90 nm in width. The large surface area of the T4 head is an important advantage for the development of functional materials since it can accommodate significantly larger numbers of functional groups, such as fluorescent dyes, in comparison with other VNPs. In this study, Cy3 and Alexa Fluor 546 were chemically incorporated into tail-less T4 heads (T4 nanoparticles) for the first time, and the fluorescent properties of the dye-conjugated nanoparticles were characterized. The T4 nanoparticles were labeled with up to 19 000 dyes, and in particular, the use of Cy3 led to fluorescent enhancements of up to 90% compared to free Cy3. We also demonstrate that the dye-conjugated T4 nanoparticles are structurally stable and that they can be used as molecular probes for cell imaging and flow cytometry applications.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression

Jinny L. Liu; Aparna Banerjee Dixit; Kelly L. Robertson; Eric Qiao; Lindsay W. Black

Significance The importance of viral icosahedral capsid-based nanoparticles (NPs) as cell-delivery vehicles is now being recognized. Virtually any specific protein and nucleic acid can be encapsidated together into a phage T4 capsid that can display surface-binding ligands for tissue targeting. In this study, T4 NPs packed in vivo with active cyclic recombination (Cre) recombinase and in vitro with fluorescent mCherry expression plasmid DNA were delivered into cancer cells. When released into cells together, the packaged active Cre recombinase within the capsid circularizes the packaged DNA of the linear expression plasmid, enhancing the expression of the mCherry gene. The efficient and specific packaging and unpackaging of DNA and active protein together into targeted cells has potential applications in targeted gene therapy and cancer therapy. Packaging specific exogenous active proteins and DNAs together within a single viral-nanocontainer is challenging. The bacteriophage T4 capsid (100 × 70 nm) is well suited for this purpose, because it can hold a single long DNA or multiple short pieces of DNA up to 170 kb packed together with more than 1,000 protein molecules. Any linear DNA can be packaged in vitro into purified procapsids. The capsid-targeting sequence (CTS) directs virtually any protein into the procapsid. Procapsids are assembled with specific CTS-directed exogenous proteins that are encapsidated before the DNA. The capsid also can display on its surface high-affinity eukaryotic cell-binding peptides or proteins that are in fusion with small outer capsid and head outer capsid surface-decoration proteins that can be added in vivo or in vitro. In this study, we demonstrate that the site-specific recombinase cyclic recombination (Cre) targeted into the procapsid is enzymatically active within the procapsid and recircularizes linear plasmid DNA containing two terminal loxP recognition sites when packaged in vitro. mCherry expression driven by a cytomegalovirus promoter in the capsid containing Cre-circularized DNA is enhanced over linear DNA, as shown in recipient eukaryotic cells. The efficient and specific packaging into capsids and the unpackaging of both DNA and protein with release of the enzymatically altered protein–DNA complexes from the nanoparticles into cells have potential in numerous downstream drug and gene therapeutic applications.


Journal of Medicinal Chemistry | 2013

3-substituted indole inhibitors against Francisella tularensis FabI identified by structure-based virtual screening.

Xin Hu; Jaimee R. Compton; Mohamed Diwan M. AbdulHameed; Kelly L. Robertson; Dagmar H. Leary; Ajit Jadhav; Jeremy R. Hershfield; Anders Wallqvist; Arthur M. Friedlander; Patricia M. Legler

In this study, we describe novel inhibitors against Francisella tularensis SchuS4 FabI identified from structure-based in silico screening with integrated molecular dynamics simulations to account for induced fit of a flexible loop crucial for inhibitor binding. Two 3-substituted indoles, 54 and 57, preferentially bound the NAD(+) form of the enzyme and inhibited growth of F. tularensis SchuS4 at concentrations near that of their measured Ki. While 57 was species-specific, 54 showed a broader spectrum of growth inhibition against F. tularensis , Bacillus anthracis , and Staphylococcus aureus . Binding interaction analysis in conjunction with site-directed mutagenesis revealed key residues and elements that contribute to inhibitor binding and species specificity. Mutation of Arg-96, a poorly conserved residue opposite the loop, was unexpectedly found to enhance inhibitor binding in the R96G and R96M variants. This residue may affect the stability and closure of the flexible loop to enhance inhibitor (or substrate) binding.


Microbiology | 2010

Identification of non-coding RNAs in environmental vibrios

Ana Cristina G. Silveira; Kelly L. Robertson; Baochuan Lin; Zheng Wang; Gary J. Vora; Ana Tereza Ribeiro de Vasconcelos; Fabiano L. Thompson

The discovery of non-coding RNA (ncRNA) has been mainly limited to laboratory model systems and human pathogenic bacteria. In this study, we begin to explore the ncRNA diversity in four recently sequenced environmental Vibrio species (Vibrio alginolyticus 40B, Vibrio communis 1DA3, Vibrio mimicus VM573 and Vibrio campbellii BAA-1116) by performing in silico searches using Infernal and Rfam for the identification of putative ncRNA-encoding genes. This search method resulted in the identification of 31-38 putative ncRNA genes per species and the total ncRNA catalogue spanned an assortment of regulatory mechanisms (riboswitches, cis-encoded ncRNAs, trans-encoded ncRNAs, modulators of protein activity, ribonucleoproteins, transcription termination ncRNAs and unknown). We chose to experimentally validate the identifications for V. campbellii BAA-1116 using a microarray-based expression profiling strategy. Transcript hybridization to tiled probes targeting annotated V. campbellii BAA-1116 intergenic regions revealed that 21 of the 38 predicted ncRNA genes were expressed in mid-exponential-phase cultures grown in nutrient-rich medium. The microarray findings were confirmed by testing a subset of three highly expressed (6S, tmRNA and TPP-2) and three moderately expressed (CsrB, GcvB and purine) ncRNAs via reverse transcription PCR. Our findings provide new information on the diversity of ncRNA in environmental vibrios while simultaneously promoting a more accurate annotation of genomic intergenic regions.


Genetic Vaccines and Therapy | 2009

Assessment of methods and analysis of outcomes for comprehensive optimization of nucleofection

Christopher E. Bradburne; Kelly L. Robertson; Dzung Thach

BackgroundNucleofection is an emerging technology for delivery of nucleic acids into both the cytoplasm and nucleus of eukaryotic cells with high efficiency. This makes it an ideal technology for gene delivery and siRNA applications. A 96-well format has recently been made available for high-throughput nucleofection, however conditions must be optimized for delivery into each specific cell type. Screening each 96-well plate can be expensive, and descriptions of methods and outcomes to determine the best conditions are lacking in the literature. Here we employ simple methods, including cell counting, microscopy, viability and cytotoxicity assays to describe the minimal experimental methods required to optimize nucleofection conditions for a given cell line.MethodsWe comprehensively measured and analyzed the outcomes of the 96-well nucleofection of pmaxGFP plasmids encoding green fluorescent protein (GFP) into the A-549 human lung epithelial cell line. Fluorescent microscopy and a plate reader were used to respectively observe and quantify green fluorescence in both whole and lysed cells. Cell viability was determined by direct counting/permeability assays, and by both absorbance and fluorescence-based plate reader cytotoxicity assays. Finally, an optimal nucleofection condition was used to deliver siRNA and gene specific knock-down was demonstrated.ResultsGFP fluorescence among conditions ranged from non-existent to bright, based upon the fluorescent microscopy and plate reader results. Correlation between direct counting of cells and plate-based cytotoxicity assays were from R = .81 to R = .88, depending on the assay. Correlation between the GFP fluorescence of lysed and unlysed cells was high, ranging from R = .91 to R = .97. Finally, delivery of a pooled sample of siRNAs targeting the gene relA using an optimized nucleofection condition resulted in a 70–95% knock down of the gene over 48 h with 90–97% cell viability.ConclusionOur results show the optimal 96-well nucleofection conditions for the widely-used human cell line, A-549. We describe simple, effective methods for determining optimal conditions with high confidence, providing a useful road map for other laboratories planning optimization of specific cell lines or primary cells. Our analysis of outcomes suggests the need to only measure unlysed, whole-cell fluorescence and cell metabolic activity using a plate reader cytotoxicity assay to determine the best conditions for 96-well nucleofection.


Applied and Environmental Microbiology | 2012

Locked Nucleic Acid and Flow Cytometry-Fluorescence In Situ Hybridization for the Detection of Bacterial Small Noncoding RNAs

Kelly L. Robertson; Gary J. Vora

ABSTRACT We describe the development and testing of a high-throughput method that enables the detection of small noncoding RNAs (ncRNAs) from single bacterial cells using locked nucleic acid probes (LNA) and flow cytometry-fluorescence in situ hybridization (flow-FISH). The LNA flow-FISH method and quantitative reverse transcription-PCR (qRT-PCR) were used to monitor the expression of three ncRNAs (6S, CsrB, and TPP-2) in Vibrio campbellii ATCC BAA-1116 cultures during lag phase, mid-log phase, and stationary phase. Both LNA flow-FISH and qRT-PCR revealed that CsrB and TPP-2 were highly expressed during lag phase but markedly reduced in mid-log phase and stationary phase, whereas 6S demonstrated no to little expression during lag phase but increased thereafter. Importantly, while LNA flow-FISH and qRT-PCR demonstrated similar overall expression trends, only LNA flow-FISH, which enabled the detection of ncRNAs in individual cells as opposed to the lysate-based ensemble measurements generated by qRT-PCR, was able to capture the cell-to-cell heterogeneity in ncRNA expression. As such, this study demonstrates a new method that simultaneously enables the in situ detection of ncRNAs and the determination of gene expression heterogeneity within an isogenic bacterial population.

Collaboration


Dive into the Kelly L. Robertson's collaboration.

Top Co-Authors

Avatar

Gary J. Vora

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jinny L. Liu

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zheng Wang

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carissa M. Soto

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher E. Bradburne

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dagmar H. Leary

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Igor L. Medintz

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jaimee R. Compton

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

James B. Delehanty

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kelly Boeneman

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge