Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly L. Rogers is active.

Publication


Featured researches published by Kelly L. Rogers.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization

Sam Stoler; Kelly L. Rogers; Scott Weitze; Lisa Morey; Molly Fitzgerald-Hayes; Richard E. Baker

A universal mark of centromeric chromatin is its packaging by a variant of histone H3 known as centromeric H3 (CenH3). The mechanism by which CenH3s are incorporated specifically into centromere DNA or the specialized function they serve there is not known. In a genetic approach to identify factors involved in CenH3 deposition, we screened for dosage suppressors of a temperature-sensitive cse4 allele in Saccharomyces cerevisiae (Cse4 is the S. cerevisiae CenH3). Independent screens yielded ORF YDL139C, which we named SCM3. Dosage suppression by SCM3 was specific for alleles affecting the histone fold domain of Cse4. Copurification and two-hybrid studies showed that Scm3 and Cse4 interact in vivo, and chromatin immunoprecipitation revealed that Scm3, like Cse4, is found associated with centromere DNA. Scm3 contains two essential protein domains, a Leu-rich nuclear export signal and a heptad repeat domain that is widely conserved in fungi. A conditional scm3 allele was generated to allow us to deplete Scm3. Upon Scm3 depletion, cells undergo a Mad2-dependent G2/M arrest, and centromere localization of Cse4 is perturbed. We suggest that S. cerevisiae Scm3 defines a previously undescribed family of fungal kinetochore proteins important for CenH3 localization.


Journal of Experimental Medicine | 2011

Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets

Emma C. Josefsson; Chloé James; Katya J. Henley; Marlyse A. Debrincat; Kelly L. Rogers; Mark R. Dowling; M. J. D. White; Elizabeth A. Kruse; Rachael M. Lane; Sarah Ellis; Paquita Nurden; Kylie D. Mason; Lorraine A. O’Reilly; Andrew W. Roberts; Donald Metcalf; David C. S. Huang; Benjamin T. Kile

Deletion of Bak and Bax, the effectors of mitochondrial apoptosis, does not affect platelet production, however, loss of prosurvival Bcl-xL results in megakaryocyte apoptosis and failure of platelet shedding.


European Journal of Neuroscience | 2005

Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters

Kelly L. Rogers; Jacques Stinnakre; Cendra Agulhon; Delphine Jublot; Spencer Shorte; Eric J. Kremer; Philippe Brulet

Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto‐fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca2+‐sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi‐functional Ca2+ reporter gene, GFP‐aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260–7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable ‘real‐time’ measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal‐to‐noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell–cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex‐vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non‐invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.


PLOS ONE | 2007

Non-Invasive In Vivo Imaging of Calcium Signaling in Mice

Kelly L. Rogers; Sandrine Picaud; Emilie Roncali; Raphaël Boisgard; Cesare Colasante; Jacques Stinnakre; Bertrand Tavitian; Philippe Brulet

Rapid and transient elevations of Ca2+ within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca2+ concentration ([Ca2+]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca2+-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca2+] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca2+] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca2+] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca2+ signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies.


Current Biology | 2012

Neutrophil-Delivered Myeloperoxidase Dampens the Hydrogen Peroxide Burst after Tissue Wounding in Zebrafish

Luke Pase; Judith E. Layton; Christine Wittmann; Felix Ellett; Cameron J. Nowell; Constantino Carlos Reyes-Aldasoro; Sony Varma; Kelly L. Rogers; Christopher J. Hall; M-Cristina Keightley; Philip S. Crosier; Clemens Grabher; Joan K. Heath; Stephen A. Renshaw; Graham J. Lieschke

Prompt neutrophil arrival is critical for host defense immediately after injury [1-3]. Following wounding, a hydrogen peroxide (H(2)O(2)) burst generated in injured tissues is the earliest known leukocyte chemoattractant [4]. Generating this tissue-scale H(2)O(2) gradient uses dual oxidase [4] and neutrophils sense H(2)O(2) by a mechanism involving the LYN Src-family kinase [5], but the molecular mechanisms responsible for H(2)O(2) clearance are unknown [6]. Neutrophils carry abundant amounts of myeloperoxidase, an enzyme catalyzing an H(2)O(2)-consuming reaction [7, 8]. We hypothesized that this neutrophil-delivered myeloperoxidase downregulates the high tissue H(2)O(2) concentrations that follow wounding. This was tested in zebrafish using simultaneous fluorophore-based imaging of H(2)O(2) concentrations and leukocytes [4, 9-11] and a new neutrophil-replete but myeloperoxidase-deficient mutant (durif). Leukocyte-depleted zebrafish had an abnormally sustained wound H(2)O(2) burst, indicating that leukocytes themselves were required for H(2)O(2) downregulation. Myeloperoxidase-deficient zebrafish also had abnormally sustained high wound H(2)O(2) concentrations despite similar numbers of arriving neutrophils. A local H(2)O(2)/myeloperoxidase interaction within wound-recruited neutrophils was demonstrated. These data demonstrate that leukocyte-delivered myeloperoxidase cell-autonomously downregulates tissue-generated wound H(2)O(2) gradients in vivo, defining a new requirement for myeloperoxidase during inflammation. Durif provides a new animal model of myeloperoxidase deficiency closely phenocopying the prevalent human disorder [7, 12, 13], offering unique possibilities for investigating its clinical consequences.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1

Ben A. Croker; Joanne A. O'Donnell; Cameron J. Nowell; Donald Metcalf; Grant Dewson; Kirsteen J. Campbell; Kelly L. Rogers; Yifang Hu; Gordon K. Smyth; Jian-Guo Zhang; Michael T. White; Kurt Lackovic; Louise H. Cengia; Lorraine A. O'Reilly; Suzanne Cory; Andreas Strasser; Andrew W. Roberts

During immune responses, neutrophils must integrate survival and death signals from multiple sources to regulate their lifespan. Signals that activate either the Bcl-2- or death receptor-regulated apoptosis pathways can provide powerful stimuli for neutrophils to undergo cell death, but whether they act cooperatively in parallel or directly cross-talk in neutrophils is not known. Previous studies suggested that Bcl-2 family proteins are not required for Fas-induced cell death in neutrophils, but did not examine whether they could modulate its rapid onset. By monitoring the rate of change in neutrophil viability associated with activation of the Fas-triggered death receptor pathway using real-time cell imaging, we show that the Bcl-2-related proteins Bid, Bax, and Bak accelerate neutrophil apoptosis but are not essential for cell death. Increased Bcl-2 or Mcl-1 expression prevents efficient induction of apoptosis by Fas stimulation indicating that the Bcl-2-regulated apoptosis pathway can directly interfere with Fas-triggered apoptosis. Fas has been shown to initiate NFκB activation and gene transcription in cell lines, however gene transcription is not altered in Fas-activated Bid−/− neutrophils, indicating that apoptosis occurs independently of gene transcription in neutrophils. The specification of kinetics of neutrophil apoptosis by Bid impacts on the magnitude of neutrophil IL-1β production, implicating a functional role for the Bcl-2-regulated pathway in controlling neutrophil responses to FasL. These data demonstrate that the intrinsic apoptosis pathway directly controls the kinetics of Fas-triggered apoptosis in neutrophils.


Nature Communications | 2013

Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes.

David T. Riglar; Kelly L. Rogers; Eric Hanssen; Lynne Turnbull; Hayley E. Bullen; Sarah C. Charnaud; Jude M. Przyborski; Paul R. Gilson; Cynthia B. Whitchurch; Brendan S. Crabb; Jake Baum; Alan F. Cowman

Export of proteins into the infected erythrocyte is critical for malaria parasite survival. The majority of effector proteins are thought to export via a proteinaceous translocon, resident in the parasitophorous vacuole membrane surrounding the parasite. Identification of the Plasmodium translocon of exported proteins and its biochemical association with exported proteins suggests it performs this role. Direct evidence for this, however, is lacking. Here using viable purified Plasmodium falciparum merozoites and three-dimensional structured illumination microscopy, we investigate remodelling events immediately following parasite invasion. We show that multiple complexes of the Plasmodium translocon of exported proteins localize together in foci that dynamically change in clustering behaviour. Furthermore, we provide conclusive evidence of spatial association between exported proteins and exported protein 2, a core component of the Plasmodium translocon of exported proteins, during native conditions and upon generation of translocation intermediates. These data provide the most direct cellular evidence to date that protein export occurs at regions of the parasitophorous vacuole membrane housing the Plasmodium translocon of exported proteins complex.


European Journal of Pharmaceutical Sciences | 2000

Inhibition of platelet aggregation and 5-HT release by extracts of Australian plants used traditionally as headache treatments.

Kelly L. Rogers; I. Darren Grice; Lyn R. Griffiths

To identify potential migraine therapeutics, extracts of eighteen plants were screened to detect plant constituents affecting ADP induced platelet aggregation and [14C]5-hydroxytryptamine (5-HT) release. Extracts of the seven plants exhibiting significant inhibition of platelet function were reanalysed in the presence of polyvinyl pyrrolidone (PVP) to remove polyphenolic tannins that precipitate proteins. Two of these extracts no longer exhibited inhibition of platelet activity after removal of tannins. However, extracts of Crataegus monogyna, Ipomoea pes-caprae, Eremophila freelingii, Eremophila longifolia, and Asteromyrtus symphyocarpa still potently inhibited ADP induced human platelet [14C]5-HT release in vitro, with levels ranging from 62 to 95% inhibition. I. pes-caprae, and C. monogyna also caused significant inhibition of ADP induced platelet aggregation. All of these plants have been previously used as traditional headache treatments, except for C. monogyna which is used primarily for protective effects on the cardiovascular system. Further studies elucidating the compounds that are responsible for these anti-platelet effects are needed to determine their exact mechanism of action.


Blood | 2012

Mcl-1 and Bcl-xL coordinately regulate megakaryocyte survival

Marlyse A. Debrincat; Emma C. Josefsson; Chloé James; Katya J. Henley; Sarah Ellis; Marion Lebois; Kelly L. Betterman; Rachael M. Lane; Kelly L. Rogers; M. J. D. White; Andrew W. Roberts; Natasha L. Harvey; Donald Metcalf; Benjamin T. Kile

Mature megakaryocytes depend on the function of Bcl-x(L), a member of the Bcl-2 family of prosurvival proteins, to proceed safely through the process of platelet shedding. Despite this, loss of Bcl-x(L) does not prevent the growth and maturation of megakaryocytes, suggesting redundancy with other prosurvival proteins. We therefore generated mice with a megakaryocyte-specific deletion of Mcl-1, which is known to be expressed in megakaryocytes. Megakaryopoiesis, platelet production, and platelet lifespan were unperturbed in Mcl-1(Pf4Δ/Pf4Δ) animals. However, treatment with ABT-737, a BH3 mimetic compound that inhibits the prosurvival proteins Bcl-2, Bcl-x(L), and Bcl-w resulted in the complete ablation of megakaryocytes and platelets. Genetic deletion of both Mcl-1 and Bcl-x(L) in megakaryocytes resulted in preweaning lethality. Megakaryopoiesis in Bcl-x(Pf4Δ/Pf4Δ) Mcl-1(Pf4Δ/Pf4Δ) embryos was severely compromised, and these animals exhibited ectopic bleeding. Our studies indicate that the combination of Bcl-x(L) and Mcl-1 is essential for the viability of the megakaryocyte lineage.


Blood | 2012

Mcl-1 and Bcl-xL co-ordinately regulate megakaryocyte survival

Marlyse A. Debrincat; Emma C. Josefsson; Chloé James; Katya J. Henley; Sarah Ellis; Marion Lebois; Kelly L. Betterman; Rachael M. Lane; Kelly L. Rogers; M. J. D. White; Andrew W. Roberts; Natasha L. Harvey; Donald Metcalf; Benjamin T. Kile

Mature megakaryocytes depend on the function of Bcl-x(L), a member of the Bcl-2 family of prosurvival proteins, to proceed safely through the process of platelet shedding. Despite this, loss of Bcl-x(L) does not prevent the growth and maturation of megakaryocytes, suggesting redundancy with other prosurvival proteins. We therefore generated mice with a megakaryocyte-specific deletion of Mcl-1, which is known to be expressed in megakaryocytes. Megakaryopoiesis, platelet production, and platelet lifespan were unperturbed in Mcl-1(Pf4Δ/Pf4Δ) animals. However, treatment with ABT-737, a BH3 mimetic compound that inhibits the prosurvival proteins Bcl-2, Bcl-x(L), and Bcl-w resulted in the complete ablation of megakaryocytes and platelets. Genetic deletion of both Mcl-1 and Bcl-x(L) in megakaryocytes resulted in preweaning lethality. Megakaryopoiesis in Bcl-x(Pf4Δ/Pf4Δ) Mcl-1(Pf4Δ/Pf4Δ) embryos was severely compromised, and these animals exhibited ectopic bleeding. Our studies indicate that the combination of Bcl-x(L) and Mcl-1 is essential for the viability of the megakaryocyte lineage.

Collaboration


Dive into the Kelly L. Rogers's collaboration.

Top Co-Authors

Avatar

Lyn R. Griffiths

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lachlan Whitehead

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Brulet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin T. Kile

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan F. Cowman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Chloé James

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge