Kelly L. Walton
Hudson Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly L. Walton.
The FASEB Journal | 2014
Justin L. Chen; Kelly L. Walton; Catherine E. Winbanks; Kate T. Murphy; Rachel E. Thomson; Yogeshwar Makanji; Hongwei Qian; Gordon S. Lynch; Craig A. Harrison; Paul Gregorevic
In models of cancer cachexia, inhibiting type IIB activin receptors (ActRIIBs) reverse muscle wasting and prolongs survival, even with continued tumor growth. ActRIIB mediates signaling of numerous TGF‐β proteins; of these, we demonstrate that activins are the most potent negative regulators of muscle mass. To determine whether activin signaling in the absence of tumor‐derived factors induces cachexia, we used recombinant serotype 6 adeno‐associated virus (rAAV6) vectors to increase circulating activin A levels in C57BL/6 mice. While mice injected with control vector gained ~10% of their starting body mass (3.8±0.4 g) over 10 wk, mice injected with increasing doses of rAAV6:activin A exhibited weight loss in a dose‐dependent manner, to a maximum of –12.4% (–4.2±1.1 g). These reductions in body mass in rAAV6:activin‐injected mice correlated inversely with elevated serum activin A levels (7‐ to 24‐fold). Mechanistically, we show that activin A reduces muscle mass and function by stimulating the ActRIIB pathway, leading to deleterious consequences, including increased transcription of atrophy‐related ubiquitin ligases, decreased Akt/mTOR‐mediated protein synthesis, and a profibrotic response. Critically, we demonstrate that the muscle wasting and fibrosis that ensues in response to excessive activin levels is fully reversible. These findings highlight the therapeutic potential of targeting activins in cachexia.—Chen, J. L., Walton, K. L., Winbanks, C. E., Murphy, K. T., Thomson, R. E., Makanji, Y., Qian, H., Lynch, G. S., Harrison, C. A., Gregorevic, P. Elevated expression of activins promotes muscle wasting and cachexia. FASEB J. 28, 28–1711 (1723). www.fasebj.org
Journal of Biological Chemistry | 2010
Kelly L. Walton; Yogeshwar Makanji; Justin R. Chen; Matthew C. J. Wilce; Karen L. Chan; David M. Robertson; Craig A. Harrison
Transforming growth factor-β1 (TGF-β1) is secreted as part of an inactive complex consisting of the mature dimer, the TGF-β1 propeptide (latency-associated peptide (LAP)), and latent TGF-β-binding proteins. Using in vitro mutagenesis, we identified the regions of LAP that govern the cooperative assembly and stability of the latent TGF-β1 complex. Initially, hydrophobic LAP residues (Ile53, Leu54, Leu57, and Leu59), which form a contiguous epitope on one surface of an amphipathic α-helix, interact with mature TGF-β1 to form the small latent complex. TGF-β1 binding is predicted to alter LAP conformation, exposing ionic residues (Arg45, Arg50, Lys56, and Arg58) on the other side of the α-helix, which form the binding site for latent TGF-β-binding proteins. The stability of the resultant large latent complex is dependent upon covalent dimerization of LAP, which is facilitated by key residues (Phe198, Asp199, Val200, Leu208, Phe217, and Leu219) at the dimer interface. Significantly, genetic mutations in LAP (e.g. R218H) that cause the rare bone disorder Camurati-Engelmann disease disrupted dimerization and reduced the stability of the latent TGF-β1 complex.
Growth Factors Journal | 2011
Craig A. Harrison; Sara L. Al-Musawi; Kelly L. Walton
All transforming growth factor-β (TGF-β) ligands are synthesised as precursor molecules consisting of a signal peptide, an N-terminal prodomain and a C-terminal mature domain. During synthesis, prodomains interact non-covalently with mature domains, maintaining the molecules in a conformation competent for dimerisation. Dimeric precursors are cleaved by proprotein convertases, and TGF-β ligands are secreted from the cell non-covalently associated with their prodomains. Extracellularly, prodomains localise TGF-β ligands within the vicinity of their target cells via interactions with extracellular matrix proteins, including fibrillin and perlecan. For some family members (TGF-β1, TGF-β2, TGF-β3, myostatin, GDF-11 and BMP-10), prodomains bind with high enough affinity to suppress biological activity. The subsequent mechanism of activation of these latent TGF-β ligands varies according to cell type and context, but all activating mechanisms directly target prodomains. Thus, prodomains control many aspects of TGF-β superfamily biology, and alterations in prodomain function are often associated with disease.
Journal of Biological Chemistry | 2009
Kelly L. Walton; Yogeshwar Makanji; Matthew C. J. Wilce; Karen L. Chan; David M. Robertson; Craig A. Harrison
The assembly and secretion of transforming growth factor β superfamily ligands is dependent upon non-covalent interactions between their pro- and mature domains. Despite the importance of this interaction, little is known regarding the underlying regulatory mechanisms. In this study, the binding interface between the pro- and mature domains of the inhibin α-subunit was characterized using in vitro mutagenesis. Three hydrophobic residues near the N terminus of the prodomain (Leu30, Phe37, Leu41) were identified that, when mutated to alanine, disrupted heterodimer assembly and secretion. It is postulated that these residues mediate dimerization by interacting non-covalently with hydrophobic residues (Phe271, Ile280, Pro283, Leu338, and Val340) on the outer convex surface of the mature α-subunit. Homology modeling indicated that these mature residues are located at the interface between two β-sheets of the α-subunit and that their side chains form a hydrophobic packing core. Mutation of these residues likely disturbs the conformation of this region, thereby disrupting non-covalent interactions with the prodomain. A similar hydrophobic interface was identified spanning the pro- and mature domains of the inhibin βA-subunit. Mutation of key residues, including Ile62, Leu66, Phe329, and Pro341, across this interface was disruptive for the production of both inhibin A and activin A. In addition, mutation of Ile62 and Leu66 in the βA-propeptide reduced its ability to bind, or inhibit the activity of, activin A. Conservation of the identified hydrophobic motifs in the pro- and mature domains of other transforming growth factor β superfamily ligands suggests that we have identified a common biosynthetic pathway governing dimer assembly.
Journal of Biological Chemistry | 2008
Yogeshwar Makanji; Kelly L. Walton; Matthew C. J. Wilce; Karen L. Chan; David M. Robertson; Craig A. Harrison
Inhibins A and B negatively regulate the production and secretion of follicle-stimulating hormone from the anterior pituitary, control ovarian follicle development and steroidogenesis, and act as tumor suppressors in the gonads. Inhibins regulate these reproductive events by forming high affinity complexes with betaglycan and activin or bone morphogenetic protein type II receptors. In this study, the binding site of inhibin A for betaglycan was characterized using inhibin A mutant proteins. An epitope for high affinity betaglycan binding was detected spanning the outer convex surface of the inhibin α-subunit. Homology modeling indicates that key α-subunit residues (Tyr50, Val108, Thr111, Ser112, Phe118, Lys119, and Tyr120) form a contiguous epitope in this region of the molecule. Disruption of betaglycan binding by the simultaneous substitution of Thr111, Ser112, and Tyr120 to alanine yielded an inhibin A variant that was unable to suppress activin-induced follicle-stimulating hormone release by rat pituitary cells in culture. Together these results indicate that a high affinity interaction between betaglycan and residues Val108–Tyr120 of the inhibin α-subunit mediate inhibin A biological activity.
Endocrinology | 2012
Courtney M. Simpson; Peter G. Stanton; Kelly L. Walton; Karen L. Chan; Lesley J. Ritter; Robert B. Gilchrist; Craig A. Harrison
Growth differentiation factor 9 (GDF9) controls granulosa cell growth and differentiation during early ovarian folliculogenesis and regulates cumulus cell function and ovulation rate in the later stages of this process. Similar to other TGF-β superfamily ligands, GDF9 is secreted from the oocyte in a noncovalent complex with its prodomain. In this study, we show that prodomain interactions differentially regulate the activity of GDF9 across species, such that murine (m) GDF9 is secreted in an active form, whereas human (h) GDF9 is latent. To understand this distinction, we used site-directed mutagenesis to introduce nonconserved mGDF9 residues into the pro- and mature domains of hGDF9. Activity-based screens of the resultant mutants indicated that a single mature domain residue (Gly(391)) confers latency to hGDF9. Gly(391) forms part of the type I receptor binding site on hGDF9, and this residue is present in all species except mouse, rat, hamster, galago, and possum, in which it is substituted with an arginine. In an adrenocortical cell luciferase assay, hGDF9 (Gly(391)Arg) had similar activity to mGDF9 (EC(50) 55 ng/ml vs. 28 ng/ml, respectively), whereas wild-type hGDF9 was inactive. hGDF9 (Gly(391)Arg) was also a potent stimulator of murine granulosa cell proliferation (EC(50) 52 ng/ml). An arginine at position 391 increases the affinity of GDF9 for its signaling receptors, enabling it to be secreted in an active form. This important species difference in the activation status of GDF9 may contribute to the variation observed in follicular development, ovulation rate, and fecundity between mammals.
Endocrinology | 2009
Yogeshwar Makanji; Peter Temple-Smith; Kelly L. Walton; Craig A. Harrison; David M. Robertson
Mature 31- and 34-kDa inhibin A and B negatively regulate the release of FSH from the anterior pituitary; however, a direct comparison of these hormones in vivo has not been undertaken. The bioactivities of highly purified preparations of recombinant human 31-kDa inhibin A and B were determined in rat pituitary cells in vitro, and in ovariectomized adult rats in vivo based on suppression of plasma FSH. The 31-kDa inhibin B was 4.2-fold more bioactive than inhibin A in vitro and 1.45 (1.01-2.79)-fold more bioactive in vivo than 31-kDa inhibin A. However, the corresponding relative binding affinities of 31-kDa inhibin B for betaglycan, betaglycan+activin type II receptor (ActRII)-A, and betaglycan+ActRIIB were lower (IC(50) 2200, 400, and 750 pm, respectively) compared with 31-kDa inhibin A (IC(50) 190, 80, and 290 pm, respectively). A 2.7- and 2.5-fold reduction in in vitro bioactivity was observed between the 31- and 34-kDa inhibin A and 31- and 34-kDa inhibin B, respectively, and these decreases in bioactivities were matched by a parallel reduction in binding to betaglycan and betaglycan+ActRIIA/B. It is concluded that the increased in vitro and in vivo bioactivities of 31-kDa inhibin B cannot be explained by a higher affinity to betaglycan or activin type II receptors; thus, additional factors mediate inhibin Bs action. In addition, similar reductions in in vitro bioactivity and betaglycan+ActRIIA/B binding between 31- and 34-kDa inhibins A and B are attributed to hindrance by the additional carbohydrate group at Asn(302) in the formation of a functional inhibin+betaglycan+ActRIIA/B complex.
Frontiers in Pharmacology | 2017
Kelly L. Walton; Katharine E. Johnson; Craig A. Harrison
Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
Endocrinology | 2013
Sara L. Al-Musawi; Kelly L. Walton; D. A. Heath; Courtney M. Simpson; Craig A. Harrison
Oocyte-derived bone morphogenetic protein 15 (BMP15) regulates ovulation rate and female fertility in a species-specific manner, being important in humans and sheep and largely superfluous in mice. To understand these species differences, we have compared the expression and activity of human, murine, and ovine BMP15. In HEK293F cells, human BMP15 is highly expressed (120 ng/ml), ovine BMP15 is poorly expressed (15 ng/ml), and murine BMP15 is undetectable. Because BMP15 synthesis is dependent upon interactions between the N-terminal prodomain and the C-terminal mature domain, we used site-directed mutagenesis to identify four prodomain residues (Glu(46), Glu(47), Leu(49), and Glu(50)) that mediate the high expression of human BMP15. Substituting these residues into the prodomains of murine and ovine BMP15 led to significant increases in growth factor expression; however, maximal expression was achieved only when the entire human prodomain was linked to the mature domains of the other species. Using these chimeric constructs, we produced and purified murine and ovine BMP15 and showed that in a COV434 granulosa cell bioassay, these molecules displayed little activity relative to human BMP15 (EC(50) 0.2nM). Sequence analysis suggested that the disparity in activity could be due to species differences at the type I receptor binding interface. Indeed, murine BMP15 activity was restored when specific residues through this region (Pro(329)/Tyr(330)) were replaced with the corresponding residues (Arg(329)/Asp(330)) from human BMP15. The identified differences in the expression and activity of BMP15 likely underlie the relative importance of this growth factor between species.
PLOS ONE | 2012
Kemperly Dynon; Sophea Heng; Michelle Puryer; Ying Li; Kelly L. Walton; Yaeta Endo; Guiying Nie
Mammalian HtrA3 (high temperature requirement A3) is a serine protease of the HtrA family. It has two isoforms [long (HtrA3-L) and short (HtrA3-S)] and is important for placental development and cancer progression. Recently, HtrA3 was identified as a potential diagnostic marker for early detection of preeclampsia, a life-threatening pregnancy-specific disorder. Currently there are no high-throughput assays available to detect HtrA3 in human serum. In this study we generated and fully tested a panel of five HtrA3 mouse monoclonal antibodies (mAbs). Three mAbs recognised both HtrA3-L and HtrA3-S and the other two detected HtrA3-L only. All five mAbs were highly specific to HtrA3 and applicable in western blotting and immunohistochemical analysis of endogenous HtrA3 proteins in the mouse and human tissues. Amplified luminescent proximity homogeneous assays-linked immunosorbent assays (AlphaLISAs), were developed to detect HtrA3 isoforms in picomolar levels in serum. The HtrA3 AlphaLISA detected significantly higher serum levels of HtrA3 in women at 13–14 weeks of gestation who subsequently developed preeclampsia compared to gestational-age matched controls. These HtrA3 mAbs are valuable for the development of immunoassays and characterisation of HtrA3 isoform-specific biology. The newly developed HtrA3 AlphaLISA assays are suitable for large scale screening of human serum.