Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly M. DeMars is active.

Publication


Featured researches published by Kelly M. DeMars.


Journal of Neurochemistry | 2014

Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke.

Kimberly E. Hawkins; Kelly M. DeMars; Jonathan Singh; Changjun Yang; Henry S. Cho; Jan C. Frankowski; Sylvain Doré; Eduardo Candelario-Jalil

Resolution of inflammation is an emerging new strategy to reduce damage following ischemic stroke. Lipoxin A4 (LXA4) is an anti‐inflammatory, pro‐resolution lipid mediator with high affinity binding to ALX, the lipoxin A4 receptor. Since LXA4 is rapidly inactivated, potent analogs have been created, including the ALX agonist BML‐111. We hypothesized that post‐ischemic intravenous administration of BML‐111 would provide protection to the neurovascular unit and reduce neuroinflammation in a rat stroke model. Animals were subjected to 90 min of middle cerebral artery occlusion (MCAO) and BML‐111 was injected 100 min and 24 h after stroke onset and animals euthanized at 48 h. Post‐ischemic treatment with BML‐111 significantly reduced infarct size, decreased vasogenic edema, protected against blood–brain barrier disruption, and reduced hemorrhagic transformation. Matrix metalloproteinase‐9 and matrix metalloproteinase‐3 were significantly reduced following BML‐111 treatment. Administration of BML‐111 dramatically decreased microglial activation, as seen with CD68, and neutrophil infiltration and recruitment, as assessed by levels of myeloperoxidase and intracellular adhesion molecule‐1. The tight junction protein zona occludens‐1 was protected from degradation following treatment with BML‐111. These results indicate that post‐ischemic activation of ALX has pro‐resolution effects that limit the inflammatory damage in the cerebral cortex and helps maintain blood–brain barrier integrity after ischemic stroke.


Scientific Reports | 2016

Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke.

Jan C. Frankowski; Kelly M. DeMars; Abdullah Shafique Ahmad; Kimberly E. Hawkins; Changjun Yang; Jenna L Leclerc; Sylvain Doré; Eduardo Candelario-Jalil

Cyclooxygenase-2 (COX-2) is activated in response to ischemia and significantly contributes to the neuroinflammatory process. Accumulation of COX-2-derived prostaglandin E2 (PGE2) parallels the substantial increase in stroke-mediated blood-brain barrier (BBB) breakdown. Disruption of the BBB is a serious consequence of ischemic stroke, and is mainly mediated by matrix metalloproteinases (MMPs). This study aimed to investigate the role of PGE2 EP1 receptor in neurovascular injury in stroke. We hypothesized that pharmacological blockade or genetic deletion of EP1 protects against BBB damage and hemorrhagic transformation by decreasing the levels and activity of MMP-3 and MMP-9. We found that post-ischemic treatment with the EP1 antagonist, SC-51089, or EP1 genetic deletion results in a significant reduction in BBB disruption and reduced hemorrhagic transformation in an experimental model of transient focal cerebral ischemia. These neurovascular protective effects of EP1 inactivation are associated with a significant reduction in MMP-9/-3, less peripheral neutrophil infiltration, and a preservation of tight junction proteins (ZO-1 and occludin) composing the BBB. Our study identifies the EP1 signaling pathway as an important link between neuroinflammation and MMP-mediated BBB breakdown in ischemic stroke. Targeting the EP1 receptor could represent a novel approach to diminish the devastating consequences of stroke-induced neurovascular damage.


Molecular Brain | 2013

Fluorometric immunocapture assay for the specific measurement of matrix metalloproteinase-9 activity in biological samples: application to brain and plasma from rats with ischemic stroke

Kimberly E. Hawkins; Kelly M. DeMars; Changjun Yang; Gary A. Rosenberg; Eduardo Candelario-Jalil

BackgroundMatrix metalloproteinases are important factors in the molecular mechanisms leading to neuronal injury in many neurological disorders. Matrix metalloproteinase (MMP)-9 is up-regulated after cerebral ischemia and neuroinflammation and is actively involved in blood–brain barrier disruption. Current methods of measuring MMP-9 activity, such as gelatin-substrate zymography, are unspecific and arduous. Here we developed an immunocapture assay with high efficiency, specificity, and sensitivity for quantifying endogenously active as well as total MMP-9 activity.ResultsA fluorescence resonance energy transfer (FRET) peptide-based immunocapture assay was developed that enables the accurate assessment of total and active forms of MMP-9 in complex biological samples. The FRET assay demonstrated correct and efficient binding of MMP-9 to a mouse monoclonal MMP-9 antibody and high specificity of the immunocapture antibody for MMP-9. Total and active levels of MMP-9 were measured in rat brain homogenates, plasma, human HT-1080 conditioned media, and RBE4 endothelial cell lysates. The FRET immunocapture assay yielded highly similar results for total MMP-9 activity when compared to gelatin-substrate zymography.ConclusionsWe suggest that the new FRET peptide-based immunocapture assay is a viable replacement of zymography for sensitive and high throughput quantification of MMP-9 activity in biological samples.


Peptides | 2016

Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions

Changjun Yang; Kelly M. DeMars; Kimberly E. Hawkins; Eduardo Candelario-Jalil

Adropin is a peptide encoded by the energy homeostasis associated gene (Enho) and plays a critical role in the regulation of lipid metabolism, insulin sensitivity, and endothelial function. Little is known of the effects of adropin in the brain and whether this peptide modulates ischemia-induced blood-brain barrier (BBB) injury. Here, we used an in vitro BBB model of rat brain microvascular endothelial cells (RBE4) and hypothesized that adropin would reduce endothelial permeability during ischemic conditions. To mimic ischemic conditions in vitro, RBE4 cell monolayers were subjected to 16h hypoxia/low glucose (HLG). This resulted in a significant increase in paracellular permeability to FITC-labeled dextran (40kDa), a dramatic upregulation of vascular endothelial growth factor (VEGF), and the loss of junction proteins occludin and VE-cadherin. Notably, HLG also significantly decreased Enho expression and adropin levels. Treatment of RBE4 cells with synthetic adropin (1, 10 and 100ng/ml) concentration-dependently reduced endothelial permeability after HLG, but this was not mediated through protection to junction proteins or through reduced levels of VEGF. We found that HLG dramatically increased myosin light chain 2 (MLC2) phosphorylation in RBE4 cells, which was significantly reduced by adropin treatment. We also found that HLG significantly increased Rho-associated kinase (ROCK) activity, a critical upstream effector of MLC2 phosphorylation, and that adropin treatment attenuated that effect. These data indicate that treatment with adropin reduces endothelial cell permeability after HLG insult by inhibition of the ROCK-MLC2 signaling pathway. These promising findings suggest that adropin protects against endothelial barrier dysfunction during ischemic conditions.


Journal of Experimental Neuroscience | 2017

Spatiotemporal Changes in P-glycoprotein Levels in Brain and Peripheral Tissues Following Ischemic Stroke in Rats

Kelly M. DeMars; Changjun Yang; Kimberly E. Hawkins; Austin O. McCrea; David M. Siwarski; Eduardo Candelario-Jalil

P-glycoprotein (P-gp) is known to transport a diverse array of xenobiotics, including therapeutic drugs. A member of the ATP-binding cassette (ABC) transporter family, P-gp is a protein encoded by the gene Mdr1 in humans and Abcb1 in rodents (represented by 2 isoforms Abcb1a and Abcb1b). Lining the luminal and abluminal membrane of brain capillary endothelial cells, P-gp is a promiscuous efflux pump extruding a variety of exogenous toxins and drugs. In this study, we measured dynamic changes in Abcb1a and Abcb1b transcripts and P-gp protein in the brain, liver, and kidney after experimental stroke. P-glycoprotein has been shown to increase in brain endothelial cells following hypoxia in vitro or after exposure to proinflammatory cytokines. Using a rat model of ischemic stroke, we hypothesized that P-gp expression will be increased in the brain, liver, and kidney in response to neuroinflammation following ischemic stroke. Adult Sprague Dawley rats underwent middle cerebral artery occlusion (MCAO) for 90 minutes and were killed at 4, 14, 24, and 48 hours postreperfusion onset to determine the time course of P-gp expression. To mimic ischemia occurring at the blood-brain barrier, rat brain endothelial (RBE4) cells were subjected to hypoxia and low glucose (HLG) for 16 hours. Immunoblotting analyses showed P-gp increases in brain and liver following 90-minute MCAO, as well as in cultured RBE4 cells after 16-hour HLG treatment, but fluctuated in the kidney depending on the time point. The relative roles of each isoform in the protein expression were analyzed with quantitative reverse transcriptase polymerase chain reaction. Ischemic stroke leads to significant increases in P-gp levels not only in the brain but also in the liver. The increase in P-gp could dramatically reduce the bioavailability and efficacy of neuroprotective drugs. Therefore, P-gp represents a big hurdle to drug delivery to the ischemic brain.


Brain and behavior | 2017

Targeting resolution of neuroinflammation after ischemic stroke with a lipoxin A4 analog: Protective mechanisms and long-term effects on neurological recovery

Kimberly E. Hawkins; Kelly M. DeMars; Jon C. Alexander; Lauren G. de Leon; Sean C. Pacheco; Christina L. Graves; Changjun Yang; Austin O. McCrea; Jan C. Frankowski; Timothy J. Garrett; Marcelo Febo; Eduardo Candelario-Jalil

Resolution of inflammation is an emerging new strategy to reduce damage following ischemic stroke. Lipoxin A4 (LXA4) is an anti‐inflammatory, pro‐resolution lipid mediator that reduces neuroinflammation in stroke. Since LXA4 is rapidly inactivated, potent analogs have been synthesized, including BML‐111. We hypothesized that post‐ischemic, intravenous treatment with BML‐111 for 1 week would provide neuroprotection and reduce neurobehavioral deficits at 4 weeks after ischemic stroke in rats. Additionally, we investigated the potential protective mechanisms of BML‐111 on the post‐stroke molecular and cellular profile.


PLOS ONE | 2017

Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats

Douglas M. Bennion; Jacob Isenberg; Allison T Harmel; Kelly M. DeMars; Alex Dang; Chad H. Jones; Megan E Pignataro; Justin T. Graham; U. Muscha Steckelings; Jon C. Alexander; Marcelo Febo; Eric G. Krause; Annette D. de Kloet; Eduardo Candelario-Jalil; Colin Sumners

Activation of the angiotensin II type 2 receptor (AT2R) by administration of Compound 21 (C21), a selective AT2R agonist, induces neuroprotection in models of ischemic stroke in young adult animals. The mechanisms of this neuroprotective action are varied, and may include direct and indirect effects of AT2R activation. Our objectives were to assess the long-term protective effects of post-stroke C21 treatments in a clinically-relevant model of stroke in aged rats and to characterize the cellular localization of AT2Rs in the mouse brain of transgenic reporter mice following stroke. Intraperitoneal injections of C21 (0.03mg/kg) after ischemic stroke induced by transient monofilament middle cerebral artery occlusion resulted in protective effects that were sustained for up to at least 3-weeks post-stroke. These included improved neurological function across multiple assessments and a significant reduction in infarct volume as assessed by magnetic resonance imaging. We also found AT2R expression to be on neurons, not astrocytes or microglia, in normal female and male mouse brains. Stroke did not induce altered cellular localization of AT2R when assessed at 7 and 14 days post-stroke. These findings demonstrate that the neuroprotection previously characterized only during earlier time points using stroke models in young animals is sustained long-term in aged rats, implying even greater clinical relevance for the study of AT2R agonists for the acute treatment of ischemic stroke in human disease. Further, it appears that this sustained neuroprotection is likely due to a mix of both direct and indirect effects stemming from selective activation of AT2Rs on neurons or other cells besides astrocytes and microglia.


Frontiers in Neuroscience | 2018

Protective Effects of L-902,688, a Prostanoid EP4 Receptor Agonist, against Acute Blood-Brain Barrier Damage in Experimental Ischemic Stroke

Kelly M. DeMars; Austin O. McCrea; David M. Siwarski; Brian D. Sanz; Changjun Yang; Eduardo Candelario-Jalil

Ischemic stroke occurs when a clot forms in the brain vasculature that starves downstream tissue of oxygen and nutrients resulting in cell death. The tissue immediately downstream of the blockage, the core, dies within minutes, but the surrounding tissue, the penumbra is potentially salvageable. Prostaglandin E2 binds to four different G-protein coupled membrane receptors EP1–EP4 mediating different and sometimes opposing responses. Pharmacological activation of the EP4 receptor has already been established as neuroprotective in stroke, but the mechanism(s) of protection are not well-characterized. In this study, we hypothesized that EP4 receptor activation reduces ischemic brain injury by reducing matrix metalloproteinase (MMP)-3/-9 production and blood-brain barrier (BBB) damage. Rats underwent transient ischemic stroke for 90 min. Animals received an intravenous injection of either the vehicle or L-902,688, a highly specific EP4 agonist, at the onset of reperfusion. Brain tissue was harvested at 24 h. We established a dose-response curve and used the optimal dose that resulted in the greatest infarct reduction to analyze BBB integrity compared to vehicle-treated rats. The presence of IgG, a blood protein, in the brain parenchyma is a marker of BBB damage, and L-902,688 (1 mg/kg; i.v.) dramatically reduced IgG extravasation (P < 0.05). Consistent with these data, we assessed zona occludens-1 and occludin, tight junction proteins integral to the maintenance of the BBB, and found reduced degradation with L-902,688 administration. With immunoblotting, qRT-PCR, and/or a fluorescence resonance energy transfer (FRET)-based activity assay, we next measured MMP-3/-9 since they are key effectors of BBB breakdown in stroke. In the cerebral cortex, not only was MMP-3 activity significantly decreased (P < 0.05), but L-902,688 treatment also reduced MMP-9 mRNA, protein, and enzymatic activity (P < 0.001). In addition, post-ischemic administration of the EP4 agonist significantly reduced pro-inflammatory cytokines IL-1β (P < 0.05) and IL-6 (P < 0.01) in the ischemic cerebral cortex. Most importantly, one injection of L-902,688 (1 mg/kg; i.v) at the onset of reperfusion significantly reduces neurological deficits up to 3 weeks later (P < 0.05). Our data show for the first time that pharmacological activation of EP4 with L-902,688 is neuroprotective in ischemic stroke by reducing MMP-3/-9 and BBB damage.


Stroke | 2017

Sustained Neurological Recovery After Stroke in Aged Rats Treated With a Novel Prostacyclin Analog

Changjun Yang; Kelly M. DeMars; Jon C. Alexander; Marcelo Febo; Eduardo Candelario-Jalil

Background and Purpose— Targeting the prostaglandin I2 prostanoid (IP) receptor to reduce stroke injury has been hindered by the lack of selective drugs. MRE-269 is the active metabolite of selexipag showing a high selectivity toward the IP receptor. Selexipag has been recently approved for clinical use in pulmonary hypertension. We hypothesized that postischemic treatment with MRE-269 provides long-lasting neuroprotection with improved neurological outcomes in a clinically relevant rat stroke model. Methods— Aged male Sprague–Dawley rats underwent transient middle cerebral artery occlusion and were randomly selected to receive either vehicle or MRE-269 (0.25 mg/kg) intravenously starting at 4.5 hours post ischemia. Accelerating rotarod and adhesive removal tests were conducted before and at 3, 7, 14, and 21 days after stroke. Infarct volume was quantified by magnetic resonance imaging at 48 hours and 21 days post middle cerebral artery occlusion. In parallel experiments, cerebral cortex samples from stroke and nonstroke sides from vehicle- and MRE-269–treated groups were collected at 18 hours post middle cerebral artery occlusion for molecular biology analyses. Results— Quantitative magnetic resonance imaging data showed that postischemic MRE-269 treatment significantly reduced infarct volume compared with vehicle-treated rats at both 48 hours and 3 weeks after stroke. MRE-269 treatment resulted in a significant long-term recovery in both locomotor and somatosensory functions after middle cerebral artery occlusion, which was associated with a reduced weight loss in animals receiving the IP receptor agonist. Postischemic MRE-269 treatment reduced proinflammatory cytokines/chemokines and oxidative stress. Damage to the blood–brain barrier, as assessed by extravasation of immunoglobulin G to the ischemic brain, was significantly reduced by MRE-269, which was associated with a reduction in matrix metalloproteinase-9 activity in the brain of stroked aged rats given the IP agonist at 4.5 hours after ischemia onset. Conclusions— Our data suggest that targeting the IP receptor with MRE-269 is a novel strategy to reduce cerebral ischemia injury and promote long-term neurological recovery in ischemic stroke.


Frontiers in Neurology | 2017

Selective Inhibition of Janus Kinase 3 Has No Impact on Infarct Size or Neurobehavioral Outcomes in Permanent Ischemic Stroke in Mice

Kelly M. DeMars; Sean C. Pacheco; Changjun Yang; David M. Siwarski; Eduardo Candelario-Jalil

Janus kinase 3 (JAK3) is associated with the common gamma chain of several interleukin (IL) receptors essential to inflammatory signaling. To study the potential role of JAK3 in stroke-induced neuroinflammation, we subjected mice to permanent middle cerebral artery occlusion and investigated the effects of JAK3 inhibition with decernotinib (VX-509) on infarct size, behavior, and levels of several inflammatory mediators. Results from our double immunofluorescence staining showed JAK3 expression on neurons, endothelial cells, and microglia/macrophages in the ischemic mouse brain (n = 3). We found for the first time that total and phosphorylated/activated JAK3 are dramatically increased after stroke in the ipsilateral hemisphere (**P < 0.01; n = 5–13/group) in addition to increased IL-21 expression after stroke (**P < 0.01; n = 5–7/group). However, inhibition of JAK3 confirmed by reduced phosphorylation of its activation loop at tyrosine residues 980/981 does not reduce infarct volume measured at 48 h after stroke (n = 6–10/group) nor does it alter behavioral outcomes sensitive to neurological deficits or stroke-induced neuroinflammatory response (n = 9–10/group). These results do not support a detrimental role for JAK3 in acute neuroinflammation following permanent focal cerebral ischemia. The functional role of increased JAK3 activation after stroke remains to be further investigated.

Collaboration


Dive into the Kelly M. DeMars's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Dang

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge