Kelly McGlinchey
MedImmune
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly McGlinchey.
Clinical Cancer Research | 2006
Feng R. Luo; Zheng Yang; Amy Camuso; Richard Smykla; Kelly McGlinchey; Krista Fager; Christine Flefleh; Stephen Castaneda; Ivan Inigo; David Kan; Mei-Li Wen; Robert Kramer; Anne Blackwood-Chirchir; Francis Y. Lee
Purpose: Chronic myeloid leukemia (CML) is caused by reciprocal translocation between chromosomes 9 and 22, forming BCR-ABL, a constitutively activated tyrosine kinase. Imatinib mesylate, a selective inhibitor of BCR-ABL, represents current frontline therapy for CML; however, emerging evidence suggests that drug resistance to imatinib may limit its long-term success. To improve treatment options, dasatinib (BMS-354825) was developed as a novel, oral, multi-targeted kinase inhibitor of BCR-ABL and SRC family kinases. To date, dasatinib has shown promising anti-leukemic activity in preclinical models of CML and in phase I/II clinical studies in patients with imatinib-resistant or imatinib-intolerant disease. Experimental Design: The pharmacokinetic and pharmacodynamic biomarkers of dasatinib were investigated in K562 human CML xenografts grown s.c. in severe combined immunodeficient mice. Tumoral levels of phospho-BCR-ABL/phospho-CrkL were determined by Western blot. Results: Following a single oral administration of dasatinib at a preclinical efficacious dose of 1.25 or 2.5 mg/kg, tumoral phospho-BCR-ABL/phospho-CrkL were maximally inhibited at ∼3 hours and recovered to basal levels by 24 hours. The time course and extent of the inhibition correlated with the plasma levels of dasatinib in mice. Pharmacokinetic/biomarker modeling predicted that the plasma concentration of dasatinib required to inhibit 90% of phospho-BCR-ABL in vivo was 10.9 ng/mL in mice and 14.6 ng/mL in humans, which is within the range of concentrations achieved in CML patients who responded to dasatinib treatment in the clinic. Conclusions: Phospho-BCR-ABL/phospho-CrkL are likely to be useful clinical biomarkers for the assessment of BCR-ABL kinase inhibition by dasatinib.
Molecular Cancer Therapeutics | 2006
Robert Wild; Krista Fager; Christine Flefleh; David Kan; Ivan Inigo; Stephen Castaneda; Feng (Roger) Luo; Amy Camuso; Kelly McGlinchey; William C. Rose
Although Erbitux (cetuximab) has proven therapeutic benefit in the clinical setting, the molecular determinants predicting responsiveness to this agent are still not very well understood. Here, we assessed the relationship between basal total and activated (pY1068) epidermal growth factor receptor (EGFR) levels in a tumor and the responsiveness to cetuximab monotherapy or combination-based treatment using human xenograft models. Cetuximab treatment alone (0.25–1 mg/mouse/injection, q3d, i.p.) effectively delayed the growth of GEO and L2987 tumors by a minimum of 10 days corresponding to log cell kill values of ≥1.0. Borderline activity was seen in the A549 and WiDr xenografts. However, cetuximab failed to show any significant antitumor activity in the HT29, HCT116, LOVO, Colo205, LX-1, HCC70, and N87 models. All of the studied tumors had detectable yet variable levels of EGFR. For combination regimens, cetuximab (1 mg/mouse/injection, q3dx5, i.p.) and cisplatin (4.5 mg/kg/injection, q3dx5, i.v.) proved to be significantly more efficacious than individual monotherapies in the cisplatin-refractory yet cetuximab-responsive GEO tumor model (P < 0.001). However, no therapeutic enhancement was observed in the cisplatin and cetuximab weakly responsive A549 xenograft. Similarly, combinations of CPT-11 (48 mg/kg/injection, q3dx5, i.v.) with cetuximab (1 mg/mouse/injection, q3dx5, i.p.) failed to show any improvements over individual monotherapies in the cetuximab resistant/weakly responsive HT29, A549, and WiDr models. We conclude that preclinical activity associated with cetuximab monotherapy does not correlate directly with relative basal levels of total or activated (pY1068) EGFR in a tumor. Moreover, robust single-agent activity by cetuximab may be the best predictor for this agent to potentiate chemotherapy-mediated antitumor activities. [Mol Cancer Ther 2006;5(1):104–13]
OncoImmunology | 2016
Carl Hay; Erin Sult; Qihui Huang; Kathy Mulgrew; Stacy Fuhrmann; Kelly McGlinchey; Scott A. Hammond; Raymond Rothstein; Jonathan Rios-Doria; Edmund Poon; Nick Holoweckyj; Nicholas M. Durham; Ching Ching Leow; Gundo Diedrich; Melissa Damschroder; Ronald Herbst; Robert E. Hollingsworth; Kris Sachsenmeier
ABSTRACT MEDI9447 is a human monoclonal antibody that is specific for the ectoenzyme CD73 and currently undergoing Phase I clinical trials. Here we show that MEDI9447 is a potent inhibitor of CD73 ectonucleotidase activity, with wide ranging immune regulatory consequences. MEDI9447 results in relief from adenosine monophosphate (AMP)-mediated lymphocyte suppression in vitro and inhibition of mouse syngeneic tumor growth in vivo. In contrast with other cancer immunotherapy agents such as checkpoint inhibitors or T-cell agonists, MEDI9447 drives changes in both myeloid and lymphoid infiltrating leukocyte populations within the tumor microenvironment of mouse models. Changes include significant alterations in a number of tumor micro-environmental subpopulations including increases in CD8+ effector cells and activated macrophages. Furthermore, these changes correlate directly with responder and non-responder subpopulations within animal studies using syngeneic tumors. Combination data showing additive activity between MEDI9447 and anti-PD-1 antibodies using human cells in vitro and mouse tumor models further demonstrate the potential value of relieving adenosine-mediated immunosuppression. Based on these data, a Phase I study to test the safety, tolerability, and clinical activity of MEDI9447 in cancer patients was initiated (NCT02503774).
Clinical Cancer Research | 2005
Feng R. Luo; Zheng Yang; Huijin Dong; Amy Camuso; Kelly McGlinchey; Krista Fager; Christine Flefleh; David Kan; Ivan Inigo; Stephen Castaneda; Tai W. Wong; Robert Kramer; Robert Wild; Francis Y. Lee
Purpose: Epidermal growth factor receptor (EGFR), a protein tyrosine kinase expressed in many types of human cancers, has been strongly associated with tumor progression. Cetuximab is an IgG1 anti-EGFR chimeric mouse/human monoclonal antibody that has been approved for the treatment of advanced colon cancer. Using human tumor xenografts grown in nude mice, we have determined the in vivo pharmacodynamic response of cetuximab at efficacious doses. Three pharmacodynamic end points were evaluated: tumoral phospho-EGFR, tumoral mitogen-activated protein kinase (MAPK) phosphorylation, and Ki67 expression. Experimental Design: The pharmacodynamic study was conducted in nude mice bearing Geo tumors following a single i.p. administration of 0.25 and 0.04 mg. The tumors were analyzed by immunohistochemistry. The levels of phospho-EGFR were quantitated by an ELISA assay. Results: At 0.25 mg, phospho-EGFR was maximally inhibited by 91% at 24 hours, whereas the level of inhibition decreased to 72% by 72 hours. At 0.04 mg, the maximum inhibition of phospho-EGFR was 53% at 24 hours, whereas the level of inhibition decreased to 37% by 72 hours. The time course of phospho-EGFR inhibition and recovery seemed to correlate with the pharmacokinetics of cetuximab. Immunohistochemical analysis showed that phospho-MAPK and Ki67 expression were inhibited between 24 and 72 hours at 0.25 and 0.04 mg. A pharmacokinetic/pharmacodynamic model was established and predicted that the plasma concentration of cetuximab required to inhibit 90% of phospho-EGFR was 67.5 μg/mL. Conclusions: Phospho-EGFR/phospho-MAPK could be useful clinical biomarkers to assess EGFR inhibition by cetuximab.
Clinical Cancer Research | 2017
Rebecca Leyland; Amanda Watkins; Kathy Mulgrew; Nicholas Holoweckyj; Lisa Bamber; Natalie Tigue; Emily Offer; John Andrews; Li Yan; Stefanie Mullins; Michael Oberst; Jane Coates Ulrichsen; David A Leinster; Kelly McGlinchey; Lesley Young; Michelle Morrow; Scott A. Hammond; Philip R Mallinder; Athula Herath; Ching Ching Leow; Robert W. Wilkinson; Ross Stewart
Purpose: To generate and characterize a murine GITR ligand fusion protein (mGITRL-FP) designed to maximize valency and the potential to agonize the GITR receptor for cancer immunotherapy. Experimental Design: The EC50 value of the mGITRL-FP was compared with an anti-GITR antibody in an in vitro agonistic cell–based reporter assay. We assessed the impact of dose, schedule, and Fc isotype on antitumor activity and T-cell modulation in the CT26 tumor model. The activity of the mGITRL-FP was compared with an agonistic murine OX40L-FP targeting OX40, in CT26 and B16F10-Luc2 tumor models. Combination of the mGITRL-FP with antibodies targeting PD-L1, PD-1, or CTLA-4 was analyzed in mice bearing CT26 tumors. Results: The mGITRL-FP had an almost 50-fold higher EC50 value compared with an anti-murine GITR antibody. Treatment of CT26 tumor-bearing mice with mGITRL-FP–mediated significant antitumor activity that was dependent on isotype, dose, and duration of exposure. The antitumor activity could be correlated with the increased proliferation of peripheral CD8+ and CD4+ T cells and a significant decrease in the frequency of intratumoral Tregs. The combination of mGITRL-FP with mOX40L-FP or checkpoint inhibitor antagonists enhanced antitumor immunity above that of monotherapy treatment. Conclusions: These results suggest that therapeutically targeting GITR represents a unique approach to cancer immunotherapy and suggests that a multimeric fusion protein may provide increased agonistic potential versus an antibody. In addition, these data provide, for the first time, early proof of concept for the potential combination of GITR targeting agents with OX40 agonists and PD-L1 antagonists. Clin Cancer Res; 23(13); 3416–27. ©2017 AACR.
Cancer Research | 2015
Carl Hay; Erin Sult; Qihui Huang; Scott A. Hammond; Kathy Mulgrew; Kelly McGlinchey; Stacy Fuhrmann; Raymond Rothstein; Edmund Poon; Ross Stewart; Robert E. Hollingsworth; Kris Sachsenmeier
MEDI9447 is a monoclonal antibody specific for the ectoenzyme, CD73. Data is presented in support of the hypothesis that targeting the extracellular production of adenosine by CD73 reduces the immunosuppressive effects of adenosine. We report a range of activities for this antibody, including inhibition of both recombinant and cellular CD73 ectonucleotidase activity, relief from AMP-mediated lymphocyte suppression in vitro, and inhibition of syngeneic tumor growth. In contrast with many other cancer immunotherapy agents such as checkpoint inhibitors or T cell agonists, MEDI9447 drives changes in both myeloid and lymphoid infiltrating leukocyte populations within the tumor microenvironment. Changes include significant increases in CD8 effector cells and activated macrophages, as well as a reduction in the proportions of myeloid-derived suppressor cells (MDSC) and regulatory T lymphocytes. Furthermore, these changes correlate directly with responder and non-responder subpopulations within the arms of animal studies using syngeneic tumors. Data showing additive activity between MEDI9447 and other immune-mediated therapy antibodies demonstrates the importance of relieving adenosine-mediated immunosuppression within tumors. Citation Format: Carl Hay, Erin Sult, Qihui Huang, Scott Hammond, Kathy Mulgrew, Kelly McGlinchey, Stacy Fuhrmann, Raymond Rothstein, Edmund Poon, Ross Stewart, Robert Hollingsworth, Kris Sachsenmeier. MEDI9447: enhancing anti-tumor immunity by targeting CD73 In the tumor microenvironment. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 285. doi:10.1158/1538-7445.AM2015-285
Cancer Research | 2017
Jonathan Rios-Doria; Jay Harper; Raymond Rothstein; Leslie Wetzel; Jon Chesebrough; Allison M. Marrero; Cui Chen; Patrick Strout; Kathy Mulgrew; Kelly McGlinchey; Ryan Fleming; Binyam Bezabeh; John Meekin; David B. Stewart; Maureen Kennedy; Philip Martin; Andrew Buchanan; Nazzareno Dimasi; Emil Michelotti; Robert E. Hollingsworth
Immunogenic cell death (ICD) is the process by which certain cytotoxic drugs induce apoptosis of tumor cells in a manner that stimulates the immune system. In this study, we investigated whether antibody-drug conjugates (ADCS) conjugated with pyrrolobenzodiazepine dimer (PBD) or tubulysin payloads induce ICD, modulate the immune microenvironment, and could combine with immuno-oncology drugs to enhance antitumor activity. We show that these payloads on their own induced an immune response that prevented the growth of tumors following subsequent tumor cell challenge. ADCs had greater antitumor activity in immunocompetent versus immunodeficient mice, demonstrating a contribution of the immune system to the antitumor activity of these ADCs. ADCs also induced immunologic memory. In the CT26 model, depletion of CD8+ T cells abrogated the activity of ADCs when used alone or in combination with a PD-L1 antibody, confirming a role for T cells in antitumor activity. Combinations of ADCs with immuno-oncology drugs, including PD-1 or PD-L1 antibodies, OX40 ligand, or GITR ligand fusion proteins, produced synergistic antitumor responses. Importantly, synergy was observed in some cases with suboptimal doses of ADCs, potentially providing an approach to achieve potent antitumor responses while minimizing ADC-induced toxicity. Immunophenotyping studies in different tumor models revealed broad immunomodulation of lymphoid and myeloid cells by ADC and ADC/immuno-oncology combinations. These results suggest that it may be possible to develop novel combinatorial therapies with PBD- and tubulysin-based ADC and immuno-oncology drugs that may increase clinical responses. Cancer Res; 77(10); 2686-98. ©2017 AACR.
Journal for ImmunoTherapy of Cancer | 2017
Nick M. Durham; Nick Holoweckyj; Randall S. MacGill; Kelly McGlinchey; Ching Ching Leow; Scott H. Robbins
BackgroundThe expansion of antigen-specific CD8 T cells is important in generating an effective and long-lasting immune response to tumors and viruses. Glucocorticoid-induced tumor necrosis factor receptor family-related receptor (GITR) is a co-stimulatory receptor that binds the GITR ligand (GITRL). Agonism of GITR can produce important signals that drive expansion of effector T cell populations.MethodsWe explored two separate murine tumor models, CT26 and TC-1, for responsiveness to GITR Ligand Fusion Protein(GITRL-FP) monotherapy. In TC-1, GITRL-FP was also combined with concurrent administration of an E7-SLP vaccine. We evaluated tumor growth inhibition by tumor volume measurements as well as changes in CD8 T cell populations and function including cytokine production using flow cytometry. Additionally, we interrogated how these therapies resulted in tumor antigen-specific responses using MHC-I dextramer staining and antigen-specific restimulations.ResultsIn this study, we demonstrate that a GITR ligand fusion protein (GITRL-FP) is an effective modulator of antigen-specific CD8 T cells. In a CT26 mouse tumor model, GITRL-FP promoted expansion of antigen-specific T cells, depletion of regulatory T cells (Tregs), and generation of long-lasting CD8 T cell memory. This memory expansion was dependent on the dose of GITRL-FP and resulted in complete tumor clearance and protection from tumor rechallenge. In contrast, in TC-1 tumor–bearing mice, GITRL-FP monotherapy could not prime an antigen-specific CD8 T cell response and was unable to deplete Tregs. However, when combined with a vaccine targeting E7, treatment with GITRL-FP resulted in an augmentation of the vaccine-induced antigen-specific CD8 T cells, the depletion of Tregs, and a potent antitumor immune response. In both model systems, GITR levels on antigen-specific CD8 T cells were higher than on all other CD8 T cells, and GITRL-FP interacted directly with primed antigen-specific CD8 T cells.ConclusionsWhen taken together, our results demonstrate that the delivery of GITRL-FP as a therapeutic can promote anti-tumor responses in the presence of tumor-specific CD8 T cells. These findings support further study into combination partners for GITRL-FP that may augment CD8 T-cell priming as well as provide hypotheses that can be tested in human clinical trials exploring GITR agonists including GITRL-FP.
Molecular Cancer Therapeutics | 2018
Michael Oberst; Catherine Auge; Chad Morris; Stacy Kentner; Kathy Mulgrew; Kelly McGlinchey; James Hair; Shino Hanabuchi; Qun Du; Melissa Damschroder; Hui Feng; Steven Eck; Nicholas Buss; Lolke de Haan; Andrew Pierce; Haesun Park; Andrew W. Sylwester; Michael K. Axthelm; Louis J. Picker; Nicholas P. Morris; Andrew D. Weinberg; Scott A. Hammond
Ligation of OX40 (CD134, TNFRSF4) on activated T cells by its natural ligand (OX40L, CD252, TNFSF4) enhances cellular survival, proliferation, and effector functions such as cytokine release and cellular cytotoxicity. We engineered a recombinant human OX40L IgG4P Fc fusion protein termed MEDI6383 that assembles into a hexameric structure and exerts potent agonist activity following engagement of OX40. MEDI6383 displayed solution-phase agonist activity that was enhanced when the fusion protein was clustered by Fc gamma receptors (FcγRs) on the surface of adjacent cells. The resulting costimulation of OX40 on T cells induced NFκB promoter activity in OX40-expressing T cells and induced Th1-type cytokine production, proliferation, and resistance to regulatory T cell (Treg)-mediated suppression. MEDI6383 enhanced the cytolytic activity of tumor-reactive T cells and reduced tumor growth in the context of an alloreactive human T cell:tumor cell admix model in immunocompromised mice. Consistent with the role of OX40 costimulation in the expansion of memory T cells, MEDI6383 administered to healthy nonhuman primates elicited peripheral blood CD4 and CD8 central and effector memory T-cell proliferation as well as B-cell proliferation. Together, these results suggest that OX40 agonism has the potential to enhance antitumor immunity in human malignancies. Mol Cancer Ther; 17(5); 1024–38. ©2018 AACR.
Molecular Therapy | 2017
Nicholas M. Durham; Kathy Mulgrew; Kelly McGlinchey; Noel R. Monks; Hong Ji; Ronald Herbst; JoAnn Suzich; Scott A. Hammond; Elizabeth J. Kelly