Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly Pritchett is active.

Publication


Featured researches published by Kelly Pritchett.


Nutrients | 2013

Vitamin D and the athlete: risks, recommendations, and benefits.

Dana Ogan; Kelly Pritchett

Vitamin D is well known for its role in calcium regulation and bone health, but emerging literature tells of vitamin D’s central role in other vital body processes, such as: signaling gene response, protein synthesis, hormone synthesis, immune response, plus, cell turnover and regeneration. The discovery of the vitamin D receptor within the muscle suggested a significant role for vitamin D in muscle tissue function. This discovery led researchers to question the impact that vitamin D deficiency could have on athletic performance and injury. With over 77% of the general population considered vitamin D insufficient, it’s likely that many athletes fall into the same category. Research has suggested vitamin D to have a significant effect on muscle weakness, pain, balance, and fractures in the aging population; still, the athletic population is yet to be fully examined. There are few studies to date that have examined the relationship between vitamin D status and performance, therefore, this review will focus on the bodily roles of vitamin D, recommended 25(OH)D levels, vitamin D intake guidelines and risk factors for vitamin D insufficiency in athletes. In addition, the preliminary findings regarding vitamin D’s impact on athletic performance will be examined.


Medicine and sport science | 2012

Chocolate Milk: A Post-Exercise Recovery Beverage for Endurance Sports

Kelly Pritchett; Robert C. Pritchett

An optimal post-exercise nutrition regimen is fundamental for ensuring recovery. Therefore, research has aimed to examine post-exercise nutritional strategies for enhanced training stimuli. Chocolate milk has become an affordable recovery beverage for many athletes, taking the place of more expensive commercially available recovery beverages. Low-fat chocolate milk consists of a 4:1 carbohydrate:protein ratio (similar to many commercial recovery beverages) and provides fluids and sodium to aid in post-workout recovery. Consuming chocolate milk (1.0-1.5•g•kg(-1) h(-1)) immediately after exercise and again at 2 h post-exercise appears to be optimal for exercise recovery and may attenuate indices of muscle damage. Future research should examine the optimal amount, timing, and frequency of ingestion of chocolate milk on post-exercise recovery measures including performance, indices of muscle damage, and muscle glycogen resynthesis.


Nutrients | 2013

The Effects of Acute Post Exercise Consumption of Two Cocoa-Based Beverages with Varying Flavanol Content on Indices of Muscle Recovery Following Downhill Treadmill Running

Katelyn Peschek; Robert C. Pritchett; Ethan Bergman; Kelly Pritchett

Dietary flavanols have been associated with reduced oxidative stress, however their efficacy in promoting recovery after exercise induced muscle damage is unclear. This study examined the effectiveness of acute consumption of cocoa-flavanols on indices of muscle recovery including: subsequent exercise performance, creatine kinase, muscle tenderness, force, and self-perceived muscle soreness. Eight endurance-trained athletes (VO2max 64.4 ± 7.6 mL/kg/min) completed a downhill running protocol to induce muscle soreness, and 48-h later completed a 5-K (kilometer) time trial. Muscle recovery measurements were taken at PRE, 24 h-POST, 48 h-POST, and POST-5K. Participants consumed 1.0 g of carbohydrate per kilogram of body weight of a randomly assigned beverage (CHOC: 0 mg flavanols vs. CocoaCHOC: 350 mg flavanols per serving) immediately after the downhill run and again 2 h later. The same protocol was repeated three weeks later with the other beverage. An ANOVA revealed no significant difference (p = 0.97) between trials for 5 K completion time (CHOC 1198.3 ± 160.6 s, CocoaCHOC 1195.5 ± 148.8 s). No significant difference was found for creatine kinase (CK) levels (p = 0.31), or muscle soreness (p = 0.21) between groups over time. These findings suggest that the acute addition of cocoa flavanols to low-fat chocolate milk offer no additional recovery benefits.


Nutrients | 2012

Comparison of glucose monitoring methods during steady-state exercise in women.

Stefanie J. Herrington; David Gee; Shireen D. Dow; Keith A. Monosky; Erika Davis; Kelly Pritchett

Data from Continuous Glucose Monitoring (CGM) systems may help improve overall daily glycemia; however, the accuracy of CGM during exercise remains questionable. The objective of this single group experimental study was to compare CGM-estimated values to venous plasma glucose (VPG) and capillary plasma glucose (CPG) during steady-state exercise. Twelve recreationally active females without diabetes (aged 21.8 ± 2.4 years), from Central Washington University completed the study. CGM is used by individuals with diabetes, however the purpose of this study was to first validate the use of this device during exercise for anyone. Data were collected between November 2009 and April 2010. Participants performed two identical 45-min steady-state cycling trials (~60% Pmax) on non-consecutive days. Glucose concentrations (CGM-estimated, VPG, and CPG values) were measured every 5 min. Two carbohydrate gel supplements along with 360 mL of water were consumed 15 min into exercise. A product-moment correlation was used to assess the relationship and a Bland-Altman analysis determined error between the three glucose measurement methods. It was found that the CGM system overestimated mean VPG (mean absolute difference 17.4 mg/dL (0.97 mmol/L)) and mean CPG (mean absolute difference 15.5 mg/dL (0.86 mmol/L)). Bland-Altman analysis displayed wide limits of agreement (95% confidence interval) of 44.3 mg/dL (2.46 mmol/L) (VPG compared with CGM) and 41.2 mg/dL (2.29 mmol/L) (CPG compared with CGM). Results from the current study support that data from CGM did not meet accuracy standards from the 15197 International Organization for Standardization (ISO).


Nutrients | 2016

25(OH)D Status of Elite Athletes with Spinal Cord Injury Relative to Lifestyle Factors.

Kelly Pritchett; Robert C. Pritchett; Dana Ogan; Phil Bishop; Elizabeth Broad; Melissa LaCroix

Background: Due to the potential negative impact of low Vitamin D status on performance-related factors and the higher risk of low Vitamin D status in Spinal Cord Injury (SCI) population, research is warranted to determine whether elite athletes with SCI have sufficient 25(OH)D levels. The purposes of this study were to examine: (1) the seasonal proportion of vitamin D insufficiency among elite athletes with SCI; and (2) to determine whether lifestyle factors, SCI lesion level, and muscle performance/function are related to vitamin D status in athletes with SCI. Methods: Thirty-nine members of the Canadian Wheelchair Sports Association, and the US Olympic Committee Paralympic program from outdoor and indoor sports were recruited for this study. Dietary and lifestyle factors, and serum 25(OH)D concentrations were assessed during the autumn (October) and winter (February/March). An independent t-test was used to assess differences in 25(OH)D status among seasons, and indoor and outdoor sports in the autumn and winter, respectively. Results: Mean ± SD serum 25(OH)D concentration was 69.6 ± 19.7 nmol/L (range from 30 to 107.3 nmol/L) and 67.4 ± 25.5 nmol/L (range from 20 to 117.3 nmol/L)in the autumn and winter, respectively. In the autumn, 15.4% of participants were considered vitamin D deficient (25(OH)D < 50 nmol/L) whereas 51.3% had 25(OH)D concentrations that would be considered insufficient (<80 nmol/L). In the winter, 15.4% were deficient while 41% of all participants were considered vitamin D insufficient. Conclusion: A substantial proportion of elite athletes with SCI have insufficient (41%–51%) and deficient (15.4%) 25(OH)D status in the autumn and winter. Furthermore, a seasonal decline in vitamin D status was not observed in the current study.


Journal of behavioral addictions | 2015

Eating disorder risk, exercise dependence, and body weight dissatisfaction among female nutrition and exercise science university majors

Natalie Harris; David Gee; Debra d’Acquisto; Dana Ogan; Kelly Pritchett

Background and Aims Past research has examined eating disorder risk among college students majoring in Nutrition and has suggested an increased risk, while other studies contradict these results. Exercise Science majors, however, have yet to be fully examined regarding their risk for eating disorders and exercise dependence. Based on pressures to fit the image associated with careers related to these two disciplines, research is warranted to examine the potential risk for both eating disorder and exercise dependence. The purpose of this study is to compare eating disorder risk, exercise dependence, and body weight dissatisfaction (BWD) between Nutrition and Exercise Science majors, compared to students outside of these career pathways. Methods Participants (n = 89) were divided into three groups based on major; Nutrition majors (NUTR; n = 31), Exercise Science majors (EXSC; n = 30), and other majors (CON; n = 28). Participants were given the EAT-26 questionnaire and the Exercise Dependence Scale. BWD was calculated as the discrepancy between actual BMI and ideal BMI. Results The majority of participants expressed a desire to weigh less (83%) and EXSC had significantly (p = .03) greater BWD than NUTR. However, there were no significant differences in eating disorder risk or exercise dependence among majors. Discussion and Conclusions This study suggested there was no significant difference in eating disorder risk or exercise dependence between the three groups (NUTR, EXSC, and CON).


Journal of Occupational and Environmental Hygiene | 2011

Effects of Forearm vs. Leg Submersion in Work Tolerance Time in a Hot Environment While Wearing Firefighter Protective Clothing

Charles P. Katica; Robert C. Pritchett; Kelly Pritchett; Andrew T. Del Pozzi; Gytis Balilionis; Tim Burnham

This study compared physiological responses and total work tolerance time following forearm submersion (FS) or leg submersion (LS) in cool water, after performing work in a hot environment while wearing fire fighting protective clothing (FPC). Participants walked at 3.5 mph on a treadmill in a hot environment (WBGT 32.8 ± 0.9°C) until a rectal temperature (Trec) of 38.5°C was reached. Participants were then subjected to one of two peripheral cooling interventions, in a counterbalanced order. Forearms or lower legs were submerged in water (16.9 ± 0.8°C) for a total of 20 min, followed by a work tolerance trial. Results indicated no significant difference (p = 0.052) between work tolerance time (LS = 21.36 ± 5.35 min vs. FS = 16.27 ± 5.56 min). Similarly, there was no significant difference for Trec (p = 0.65), heart rate (HR) (p = 0.79), mean skin temperature (Tsk) (p = 0.68), and rating of perceived exertion (RPE) (p = 0.54). However, LS ratings of thermal comfort (RTC) at Minute 14 (p = 0.03) were significantly lower for LS (10 ± 1) vs. FS (12 ± 1). Results indicate little difference between FS and LS for physiological measures. Despite a lack of statistical significance a 5-min (24%) increase was found during the work tolerance time following LS.


Biology of Sport | 2015

Sweat gland density and response during high-intensity exercise in athletes with spinal cord injuries.

Robert C. Pritchett; ALi Al-Nawaiseh; Kelly Pritchett; Vince Nethery; Phillip A. Bishop; James M. Green

Sweat production is crucial for thermoregulation. However, sweating can be problematic for individuals with spinal cord injuries (SCI), as they display a blunting of sudomotor and vasomotor responses below the level of the injury. Sweat gland density and eccrine gland metabolism in SCI are not well understood. Consequently, this study examined sweat lactate (S-LA) (reflective of sweat gland metabolism), active sweat gland density (SGD), and sweat output per gland (S/G) in 7 SCI athletes and 8 able-bodied (AB) controls matched for arm ergometry VO2peak. A sweat collection device was positioned on the upper scapular and medial calf of each subject just prior to the beginning of the trial, with iodine sweat gland density patches positioned on the upper scapular and medial calf. Participants were tested on a ramp protocol (7 min per stage, 20 W increase per stage) in a common exercise environment (21±1°C, 45-65% relative humidity). An independent t-test revealed lower (p<0.05) SGD (upper scapular) for SCI (22.3 ±14.8 glands · cm−2) vs. AB. (41.0 ± 8.1 glands · cm−2). However, there was no significant difference for S/G between groups. S-LA was significantly greater (p<0.05) during the second exercise stage for SCI (11.5±10.9 mmol · l−1) vs. AB (26.8±11.07 mmol · l−1). These findings suggest that SCI athletes had less active sweat glands compared to the AB group, but the sweat response was similar (SLA, S/G) between AB and SCI athletes. The results suggest similar interglandular metabolic activity irrespective of overall sweat rate.


Frontiers in Physiology | 2017

Taurine: A Potential Ergogenic Aid for Preventing Muscle Damage and Protein Catabolism and Decreasing Oxidative Stress Produced by Endurance Exercise

Flávia Gd Carvalho; Bryan S. M. Galan; Priscila C. Santos; Kelly Pritchett; Karina Pfrimer; Eduardo Ferriolli; Marcelo Papoti; Júlio Sérgio Marchini; Ellen Cristini de Freitas

The aim of this study was to evaluate the effects of taurine and chocolate milk supplementation on oxidative stress and protein metabolism markers, and aerobic parameters in triathletes. Methods: A double-blind, crossover study was conducted with 10 male triathletes, aged 30.9 ± 1.3 year, height 1.79 ± 0.01 m and body weight 77.45 ± 2.4 kg. Three grams of taurine and 400 ml of chocolate milk (TAUchoc), or a placebo (chocolate milk) (CHOC) was ingested post exercise for 8 weeks. Oxidative stress marker levels, and 24 h urinary nitrogen, creatinine, and urea excretion were measured before and after 8 weeks of training and supplementation with TAUchoc or CHOC. A maximal incremental running test on a treadmill was performed in order to evaluate aerobic parameters: Vmax, heart rate (HR) and rate of perceived exertion (RPE). Results: TAUchoc treatment during the 8 weeks resulted in increased taurine plasma levels (PRE 201.32 ± 29.03 μmol/L and POST 234.36 ± 35.51 μmol/L, p = 0.01), decreased malondialdehyde levels (19.4%, p = 0.03) and urinary nitrogen excretion (−33%, p = 0.03), and promoted positive nitrogen balance (p = 0.01). There were no changes in reduced glutathione (TAUchoc PRE 0.72 ± 0.08 mmol/L and POST 0.83 ± 0.08 mmol/L; CHOC PRE 0.69 ± 0.08 mmol/L and POST 0.81 ± 0.06 mmol/L), vitamin E plasma levels (TAUchoc PRE 33.99 ± 2.52 μmol/L and 35.95 ± 2.80 μmol/L and CHOC PRE 31.48 ± 2.12 μmol/L and POST 33.77 ± 3.64 μmol/L), or aerobic parameters, which were obtained in the last phase of the maximal incremental running test (Vmax TAUchoc PRE 13 ± 1.4 km/h and POST 13.22 ± 1.34 km/h; CHOC PRE 13.11 ± 2.34 km/h and POST 13.11 ± 2.72 km/h), the heart rate values were TAUchoc PRE 181.89 ± 24.18 bpm and POST 168.89 ± 46.56 bpm; CHOC PRE 181.56 ± 2.14 bpm and POST 179.78 ± 3.4 bpm, and the RPE were TAUchoc PRE 8.33 ± 2.4 AU and POST 9.1 ± 2.1 AU; CHOC PRE 8.11 ± 4.94 AU and POST 8.78 ± 2.78 AU). Conclusion: Taurine supplementation did not improve aerobic parameters, but was effective in increasing taurine plasma levels and decreasing oxidative stress markers, which suggests that taurine may prevent oxidative stress in triathletes.


Journal of The American College of Nutrition | 2012

Ultrahigh-Viscosity Hydroxypropylmethylcellulose Blunts Postprandial Glucose after a Breakfast Meal in Women

Shireen D. Dow; Kelly Pritchett; Susan N. Hawk; Stefanie J. Herrington; David Gee

Objective: To determine the effects of two water-soluble dietary fibers, ultrahigh-viscosity hydroxypropylmethylcellulose (UHV-HPMC, nonfermentable) and psyllium fiber (fermentable), on postprandial glucose and second meal effects. Methods: In a single-blind crossover design, 12 healthy adult subjects were given standardized, premeasured breakfast and lunch meals with either 4 g of the fiber supplements or a placebo. Blood glucose was measured with a continuous blood glucose monitoring system (DexCom Seven Plus, San Diego, CA). Results: Subjects consuming UHV-HPMC had significantly (p < 0.05) lower blood glucose area under the curve (AUC) 2 hours after breakfast than those receiving a placebo. Subjects consuming psyllium also tended to have lower glucose levels than the placebo group. Peak glucose concentration following breakfast was significantly (p < 0.01) less with UHV-HPMC when compared with the placebo. No significant differences in AUC or peak glucose concentration between treatments following the second meal (lunch) were detected, suggesting no residual effect from the fiber supplements. Conclusions: Supplementation with viscous water-soluble fibers may be an effective means of reducing the glycemic response of a meal in healthy adults.

Collaboration


Dive into the Kelly Pritchett's collaboration.

Top Co-Authors

Avatar

Robert C. Pritchett

Central Washington University

View shared research outputs
Top Co-Authors

Avatar

David Gee

Central Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dana Ogan

University of Alabama

View shared research outputs
Top Co-Authors

Avatar

Melissa LaCroix

Central Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shireen D. Dow

Central Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge