Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly R. Bijanki is active.

Publication


Featured researches published by Kelly R. Bijanki.


Journal of Psychiatric Research | 2013

Characterization of Depression in Prodromal Huntington Disease in the Neurobiological Predictors of HD (PREDICT-HD) Study

Eric A. Epping; James A. Mills; Leigh J. Beglinger; Jess G. Fiedorowicz; David Craufurd; Megan M. Smith; Mark Groves; Kelly R. Bijanki; Nancy Downing; Janet K. Williams; Jeffrey D. Long; Jane S. Paulsen

Depression causes significant morbidity and mortality, and this also occurs in Huntington Disease (HD), an inherited neurodegenerative illness with motor, cognitive, and psychiatric symptoms. The presentation of depression in this population remains poorly understood, particularly in the prodromal period before development of significant motor symptoms. In this study, we assessed depressive symptoms in a sample of 803 individuals with the HD mutation in the prodromal stage and 223 mutation-negative participants at the time of entry in the Neurobiological Predictors of HD (PREDICT-HD) study. Clinical and biological HD variables potentially related to severity of depression were analyzed. A factor analysis was conducted to characterize the symptom domains of depression in a subset (n=168) with clinically significant depressive symptoms. Depressive symptoms were found to be more prevalent in HD mutation carriers but did not increase with proximity to HD diagnosis and were not associated with length of the HD mutation. Increased depressive symptoms were significantly associated with female gender, self-report of past history of depression, and a slight decrease in functioning, but not with time since genetic testing. The factor analysis identified symptom domains similar to prior studies in other populations. These results show that individuals with the HD mutation are at increased risk to develop depressive symptoms at any time during the HD prodrome. The clinical presentation appears to be similar to other populations. Severity and progression are not related to the HD mutation.


Schizophrenia Research | 2015

Effects of age on white matter integrity and negative symptoms in schizophrenia

Kelly R. Bijanki; Brendan Hodis; Vincent A. Magnotta; Eugene Zeien; Nancy C. Andreasen

The current study examined the relationship between white matter integrity as indexed by diffusion tensor imaging and negative symptom severity in schizophrenia. The current study included statistical controls for age effects on the relationship of interest, a major weakness of the existing literature on the subject. Participants included 59 chronic schizophrenia patients, and 31 first-episode schizophrenia patients. Diffusion-weighted neuroimaging was used to calculate fractional anisotropy (FA) in each major brain region (frontal, temporal, parietal, and occipital lobes). Negative symptoms were measured using the Scale for the Assessment of Negative Symptoms (SANS) in all schizophrenia patients. Significant bivariate correlations were observed between global SANS scores and global FA, as well as in most brain regions. These relationships appeared to be driven by SANS items measuring facial expressiveness, poor eye contact, affective flattening, inappropriate affect, poverty of speech, poverty of speech content, alogia, and avolition. However, upon addition of age as a covariate, the observed relationships became non-significant. Further analysis revealed very strong age effects on both FA and SANS scores in the current sample. The findings of this study refute previous reports of significant relationships between DTI variables and negative symptoms in schizophrenia, and they suggest an important confounding variable to be considered in future studies in this population.


PLOS ONE | 2014

Hippocampal and Left Subcallosal Anterior Cingulate Atrophy in Psychotic Depression

Kelly R. Bijanki; Brendan Hodis; Michael C. Brumm; Emily L. Harlynn; Laurie M. McCormick

Background Psychotic depression is arguably the most diagnostically stable subtype of major depressive disorder, and an attractive target of study in a famously heterogeneous mental illness. Previous imaging studies have identified abnormal volumes of the hippocampus, amygdala, and subcallosal region of the anterior cingulate cortex (scACC) in psychotic depression, though studies have not yet examined the role of family history of depression in these relationships. Methods 20 participants with psychotic depression preparing to undergo electroconvulsive therapy and 20 healthy comparison participants (13 women and 7 men in each group) underwent structural brain imaging in a 1.5 T MRI scanner. 15 of the psychotic depression group had a first-degree relative with diagnosed affective disorders, while the healthy control group had no first-degree relatives with affective disorders. Depression severity was assessed with the Hamilton Depression Rating Scale and duration of illness was assessed in all patients. Automated neural nets were used to isolate the hippocampi and amygdalae in each scan, and an established manual method was used to parcellate the anterior cingulate cortex into dorsal, rostral, subcallosal, and subgenual regions. The volumes of these regions were compared between groups. Effects of laterality and family history of affective disorders were examined as well. Results Patients with psychotic depression had significantly smaller left scACC and bilateral hippocampal volumes, while no group differences in other anterior cingulate cortex subregions or amygdala volumes were present. Hippocampal atrophy was found in all patients with psychotic depression, but reduced left scACC volume was found only in the patients with a family history of depression. Conclusions Patients with psychotic depression showed significant reduction in hippocampal volume bilaterally, perhaps due to high cortisol states associated with this illness. Reduced left scACC volume may be a vulnerability factor related to family history of depression.


Psychiatry Research-neuroimaging | 2013

Characterizing white matter health and organization in atherosclerotic vascular disease: A diffusion tensor imaging study

Kelly R. Bijanki; Stephan Arndt; Vincent A. Magnotta; Peg Nopoulos; Sergio Paradiso; Joy T. Matsui; Hans J. Johnson; David J. Moser

Atherosclerotic vascular disease (AVD) is endemic to the developed world, with known negative outcomes for cognition and brain health. The effects of AVD on the white matter fibers of the brain have not yet been studied using diffusion tensor imaging (DTI). This study examined differences in fractional anisotropy (FA) between AVD and healthy comparison (HC) participants, and described the regional patterns of FA in each group. AVD participants were hypothesized to have lower FA than HC participants, indicating abnormalities in white matter health or organization. 1.5 T diffusion tensor imaging was performed in 35 AVD and 22 HC participants. Mean FA measures were calculated for the white matter of the whole brain, as well for individual lobes. Globally and in every brain region measured except the temporal lobes, there were significant effects of group where AVD participants had lower FA values than their HC counterparts. Group differences in FA remained significant when controlled for white matter hyperintensity (WMH) volume, suggesting that FA detects white matter abnormality above and beyond what is measurable using the older WMH technique. These findings suggest a likely neural substrate underlying the changes in cognition and mood reported in atherosclerotic vascular disease patients.


International Journal of Geriatric Psychiatry | 2013

White matter fractional anisotropy is inversely related to anxious symptoms in older adults with atherosclerosis

Kelly R. Bijanki; Ashley N. Stillman; Stephan Arndt; Vincent A. Magnotta; Jess G. Fiedorowicz; William G. Haynes; Joy T. Matsui; Hans J. Johnson; David J. Moser

Clinical anxiety disorders are associated with white matter hyperintensities and diffusion abnormalities measured using diffusion tensor imaging. However, it is not known if this association extends into individuals with mild anxious symptoms without formal diagnosis, in those who are older, or in those who have atherosclerosis. The current study explores whether white matter integrity and/or organization significantly associates with anxious symptoms in older adults with and without atherosclerosis.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Direct electrical stimulation of the amygdala enhances declarative memory in humans

Cory S. Inman; Joseph R. Manns; Kelly R. Bijanki; David I. Bass; Stephan Hamann; Daniel L. Drane; Rebecca E. Fasano; Christopher K. Kovach; Robert E. Gross; Jon T. Willie

Significance Memories for emotional events tend to persist, raising a fundamental question about how the brain prioritizes significant memories. Past studies have pointed to a central role for the amygdala in mediating this endogenous memory enhancement. However, the premise that the amygdala can causally enhance declarative memory has not been directly tested in humans. Here we show that brief electrical stimulation to the human amygdala can enhance declarative memory for specific images of neutral objects without eliciting a subjective emotional response, likely by engaging other memory-related brain regions. The results show the human amygdala has a general capacity to initiate enhancement of specific declarative memories rather than a narrower role limited to indirectly mediating emotional effects on memory. Emotional events are often remembered better than neutral events, a benefit that many studies have hypothesized to depend on the amygdala’s interactions with memory systems. These studies have indicated that the amygdala can modulate memory-consolidation processes in other brain regions such as the hippocampus and perirhinal cortex. Indeed, rodent studies have demonstrated that direct activation of the amygdala can enhance memory consolidation even during nonemotional events. However, the premise that the amygdala causally enhances declarative memory has not been directly tested in humans. Here we tested whether brief electrical stimulation to the amygdala could enhance declarative memory for specific images of neutral objects without eliciting a subjective emotional response. Fourteen epilepsy patients undergoing monitoring of seizures via intracranial depth electrodes viewed a series of neutral object images, half of which were immediately followed by brief, low-amplitude electrical stimulation to the amygdala. Amygdala stimulation elicited no subjective emotional response but led to reliably improved memory compared with control images when patients were given a recognition-memory test the next day. Neuronal oscillations in the amygdala, hippocampus, and perirhinal cortex during this next-day memory test indicated that a neural correlate of the memory enhancement was increased theta and gamma oscillatory interactions between these regions, consistent with the idea that the amygdala prioritizes consolidation by engaging other memory regions. These results show that the amygdala can initiate endogenous memory prioritization processes in the absence of emotional input, addressing a fundamental question and opening a path to future therapies.


Physiology & Behavior | 2018

Explaining individual variation in paternal brain responses to infant cries

Ting Li; Marilyn Horta; Jennifer S. Mascaro; Kelly R. Bijanki; Luc H. Arnal; Melissa C. Adams; Ronald G. Barr; James K. Rilling

Crying is the principal means by which newborn infants shape parental behavior to meet their needs. While this mechanism can be highly effective, infant crying can also be an aversive stimulus that leads to parental frustration and even abuse. Fathers have recently become more involved in direct caregiving activities in modern, developed nations, and fathers are more likely than mothers to physically abuse infants. In this study, we attempt to explain variation in the neural response to infant crying among human fathers, with the hope of identifying factors that are associated with a more or less sensitive response. We imaged brain function in 39 first-time fathers of newborn infants as they listened to both their own and a standardized unknown infant cry stimulus, as well as auditory control stimuli, and evaluated whether these neural responses were correlated with measured characteristics of fathers and infants that were hypothesized to modulate these responses. Fathers also provided subjective ratings of each cry stimulus on multiple dimensions. Fathers showed widespread activation to both own and unknown infant cries in neural systems involved in empathy and approach motivation. There was no significant difference in the neural response to the own vs. unknown infant cry, and many fathers were unable to distinguish between the two cries. Comparison of these results with previous studies in mothers revealed a high degree of similarity between first-time fathers and first-time mothers in the pattern of neural activation to newborn infant cries. Further comparisons suggested that younger infant age was associated with stronger paternal neural responses, perhaps due to hormonal or novelty effects. In our sample, older fathers found infant cries less aversive and had an attenuated response to infant crying in both the dorsal anterior cingulate cortex (dACC) and the anterior insula, suggesting that compared with younger fathers, older fathers may be better able to avoid the distress associated with empathic over-arousal in response to infant cries. A principal components analysis revealed that fathers with more negative emotional reactions to the unknown infant cry showed decreased activation in the thalamus and caudate nucleus, regions expected to promote positive parental behaviors, as well as increased activation in the hypothalamus and dorsal ACC, again suggesting that empathic over-arousal might result in negative emotional reactions to infant crying. In sum, our findings suggest that infant age, paternal age and paternal emotional reactions to infant crying all modulate the neural response of fathers to infant crying. By identifying neural correlates of variation in paternal subjective reactions to infant crying, these findings help lay the groundwork for evaluating the effectiveness of interventions designed to increase paternal sensitivity and compassion.


Frontiers in Human Neuroscience | 2015

Depressive symptoms related to low fractional anisotropy of white matter underlying the right ventral anterior cingulate in older adults with atherosclerotic vascular disease.

Kelly R. Bijanki; Joy T. Matsui; Helen S. Mayberg; Vincent A. Magnotta; Stephan Arndt; Hans J. Johnson; Peg Nopoulos; Sergio Paradiso; Laurie M. McCormick; Jess G. Fiedorowicz; Eric A. Epping; David J. Moser

We sought to characterize the relationship between integrity of the white matter underlying the ventral anterior cingulate (vAC) and depressive symptoms in older adults with atherosclerotic vascular disease (AVD), a condition associated with preferential degeneration of the white matter. The vAC was defined as including white matter underlying ventral Brodmann Area 24 and Brodmann Area 25, corresponding with the “subcallosal” and “subgenual” cingulate respectively. This region of interest was chosen based on the preponderance of evidence that the white matter in the region plays a critical role in the manifestation of depressive symptoms. Participants had current unequivocal diagnoses of AVD and were between 55 and 90 years-old. Fractional anisotropy (FA) was used as an index of white matter integrity and organization. Whole-brain mean diffusivity (MD) was used as an index of global white matter lesion burden. Depressive symptoms were measured using the Symptom Checklist-90-Revised (SCL-90-R) Depression Scale. Depressive symptoms were significantly related to low FA in the right vAC (r = -0.356, df = 30, p = 0.045) but not the left vAC (r = 0.024, df = 30, p = 0.896) after controlling for total brain MD (a statistical control for global white matter lesion burden). Further, depressive symptoms were significantly related to low FA in the right vAC (r = -0.361, df = 31, p = 0.039), but not the left vAC (r = 0.259, df = 31, p = 0.145) when controlled for the contralateral vAC FA. The correlation coefficients for this follow-up analysis were found to be significantly different between left and right vAC (Z = 2.310, p = 0.021). Poor white matter health in the vAC may be a biological mechanism for depressive symptoms in older adults with vascular disease. Further studies may corroborate that the right vAC plays a unique role in depressive symptom manifestation in cases where the white matter is preferentially affected, as is the case in AVD. This could lead to future targeting of the region for somatic antidepressant treatment, as well as the development of a precise approach for patients with white matter damage, which could produce significant improvement in quality of life, medical morbidity, and mortality.


Neuropsychologia | 2018

Human amygdala stimulation effects on emotion physiology and emotional experience

Cory S. Inman; Kelly R. Bijanki; David I. Bass; Robert E. Gross; Stephan Hamann; Jon T. Willie

The amygdala is a key structure mediating emotional processing. Few studies have used direct electrical stimulation of the amygdala in humans to examine stimulation-elicited physiological and emotional responses, and the nature of such effects remains unclear. Determining the effects of electrical stimulation of the amygdala has important theoretical implications for current discrete and dimensional neurobiological theories of emotion, which differ substantially in their predictions about the emotional effects of such stimulation. To examine the effects of amygdala stimulation on physiological and subjective emotional responses we examined epilepsy patients undergoing intracranial EEG monitoring in which depth electrodes were implanted unilaterally or bilaterally in the amygdala. Nine subjects underwent both sham and acute monopolar electrical stimulation at various parameters in electrode contacts located in amygdala and within lateral temporal cortex control locations. Stimulation was applied at either 50 Hz or 130 Hz, while amplitudes were increased stepwise from 1 to 12 V, with subjects blinded to stimulation condition. Electrodermal activity (EDA), heart rate (HR), and respiratory rate (RR) were simultaneously recorded and subjective emotional response was probed after each stimulation period. Amygdala stimulation (but not lateral control or sham stimulation) elicited immediate and substantial dose-dependent increases in EDA and decelerations of HR, generally without affecting RR. Stimulation elicited subjective emotional responses only rarely, and did not elicit clinical seizures in any subject. These physiological results parallel stimulation findings with animals and are consistent with orienting/defensive responses observed with aversive visual stimuli in humans. In summary, these findings suggest that acute amygdala stimulation in humans can be safe and can reliably elicit changes in emotion physiology without significantly affecting subjective emotional experience, providing a useful approach for investigation of amygdala-mediated modulatory effects on cognition.


Human Brain Mapping | 2018

Test-retest reliability of a stimulation-locked evoked response to deep brain stimulation in subcallosal cingulate for treatment resistant depression

Allison C. Waters; Ashan Veerakumar; Ki Sueng Choi; Bryan Howell; Vineet Tiruvadi; Kelly R. Bijanki; Andrea Crowell; Patricio Riva-Posse; Helen S. Mayberg

Deep brain stimulation (DBS) to the subcallosal cingulate cortex (SCC) is an emerging therapy for treatment resistant depression. Precision targeting of specific white matter fibers is now central to the model of SCC DBS treatment efficacy. A method to confirm SCC DBS target engagement is needed to reduce procedural variance across treatment providers and to optimize DBS parameters for individual patients. We examined the reliability of a novel cortical evoked response that is time‐locked to a 2 Hz DBS pulse and shows the propagation of signal from the DBS target. The evoked response was detected in four individuals as a stereotyped series of components within 150 ms of a 6 V DBS pulse, each showing coherent topography on the head surface. Test–retest reliability across four repeated measures over 14 months met or exceeded standards for valid test construction in three of four patients. Several observations in this pilot sample demonstrate the prospective utility of this method to confirm surgical target engagement and instruct parameter selection. The topography of an orbital frontal component on the head surface showed specificity for patterns of forceps minor activation, which may provide a means to confirm DBS location with respect to key white matter structures. A divergent cortical response to unilateral stimulation of left (vs. right) hemisphere underscores the need for feedback acuity on the level of a single electrode, despite bilateral presentation of therapeutic stimulation. Results demonstrate viability of this method to explore patient‐specific cortical responsivity to DBS for brain‐circuit pathologies.

Collaboration


Dive into the Kelly R. Bijanki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Moser

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurie M. McCormick

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Arndt

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brendan Hodis

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge