Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly S. Colletti is active.

Publication


Featured researches published by Kelly S. Colletti.


Current Biology | 2000

A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus

Kelly S. Colletti; Elizabeth A. R. Tattersall; Kevin A. Pyke; John E. Froelich; Kevin D. Stokes; Katherine W. Osteryoung

BACKGROUND Chloroplast division in plant cells occurs by binary fission, yielding two daughter plastids of equal size. Previously, we reported that two Arabidopsis homologues of FtsZ, a bacterial protein that forms a cytokinetic ring during cell division, are essential for plastid division in plants, and may be involved in the formation of plastid-dividing rings on both the stromal and cytosolic surfaces of the chloroplast envelope membranes. In bacteria, positioning of the FtsZ ring at the center of the cell is mediated in part by the protein MinD. Here, we identified AtMinD1, an Arabidopsis homologue of MinD, and investigated whether positioning of the plastid-division apparatus at the plastid midpoint might involve a mechanism similar to that in bacteria. RESULTS Sequence analysis and in vitro chloroplast import experiments indicated that AtMinD1 contains a transit peptide that targets it to the chloroplast. Transgenic Arabidopsis plants with reduced AtMinD1 expression exhibited variability in chloroplast size and number and asymmetrically constricted chloroplasts, strongly suggesting that the plastid-division machinery is misplaced. Overexpression of AtMinD1 inhibited chloroplast division. These phenotypes resemble those of bacterial mutants with altered minD expression. CONCLUSIONS Placement of the plastid-division machinery at the organelle midpoint requires a plastid-targeted form of MinD. The results are consistent with a model whereby assembly of the division apparatus is initiated inside the chloroplast by the plastidic form of FtsZ, and suggest that positioning of the cytosolic components of the apparatus is specified by the position of the plastidic components.


Journal of Virology | 2002

Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains two functional lytic origins of DNA replication.

David P. AuCoin; Kelly S. Colletti; Yiyang Xu; Sylvia A. Cei; Gregory S. Pari

ABSTRACT We used a transient-transfection replication assay to identify two functional copies of the human herpesvirus 8 (HHV8) lytic origin of DNA replication (oriLyt). BCLB-1 cells were transfected with HHV8 subgenomic fragments containing the putative lytic origin along with a plasmid expressing viral transactivator open reading frame (ORF) 50. The HHV8 left-end oriLyt (oriLyt-L) lies between ORFs K4.2 and K5 and is composed of a region encoding various transcription factor binding sites and an A+T-rich region and a G+C repeat region. The right-end oriLyt (oriLyt-R) maps between ORF 69 and vFLIP, a region similar to the RRV oriLyt, and is an inverted duplication of oriLyt-L.


Journal of Virology | 2008

Identification of Human Cytomegalovirus UL84 Virus- and Cell-Encoded Binding Partners by Using Proteomics Analysis

Yang Gao; Kelly S. Colletti; Gregory S. Pari

ABSTRACT Human cytomegalovirus (HCMV) UL84 is a phosphoprotein that shuttles from the nucleus to the cytoplasm and is required for oriLyt-dependent DNA replication and viral growth. UL84 was previously shown to interact with IE2 (IE86) in infected cells, and this interaction down-regulates IE2-mediated transcriptional activation in transient assays. UL84 and IE2 were also shown to cooperatively activate a promoter within HCMV oriLyt. UL84 alone can interact with an RNA stem-loop within oriLyt and is bound to this structure within the virion. In an effort to investigate the binding partners for UL84 in infected cells, we pulled down UL84 from protein lysates prepared from HCMV-infected human fibroblasts by using a UL84-specific antibody and resolved the immunoprecipitated protein complexes by two-dimensional gel electrophoresis. We subsequently identified individual proteins by matrix-assisted laser desorption ionization-tandem time of flight analysis. This analysis revealed that UL84 interacts with viral proteins UL44, pp65, and IE2. In addition, a number of cell-encoded proteins were identified, including ubiquitin-conjugating enzyme E2, casein kinase II (CKII), and the multifunctional protein p32. We also confirmed the interaction between UL84 and IE2 as well as the interaction of UL84 with importin α. UL44, pp65, and CKII interactions were confirmed to occur in infected and cotransfected cells by coimmunoprecipitation assays followed by Western blotting. Ubiquitination of UL84 occurred in the presence and absence of the proteasome activity inhibitor MG132 in infected cells. The identification of UL84 binding partners is a significant step toward the understanding of the function of this significant replication protein.


Journal of Virology | 2004

Human Cytomegalovirus DNA Replication Requires Transcriptional Activation via an IE2- and UL84-Responsive Bidirectional Promoter Element within oriLyt

Yiyang Xu; Sylvia A. Cei; Alicia Rodriguez Huete; Kelly S. Colletti; Gregory S. Pari

ABSTRACT Amplification of the human cytomegalovirus (HCMV) lytic origin (oriLyt) in human fibroblasts is dependent upon six core replication proteins and UL84, IE2, and UL36-38. Using a telomerase-immortalized human fibroblast cell line (T-HFs), oriLyt-dependent DNA replication no longer required the gene products of UL36-38. To determine the role of IE2 in DNA replication in human fibroblasts, we examined potential IE2-binding sites within HCMV oriLyt. We now show that a strong bidirectional promoter (oriLytPM) (nucleotides 91754 to 92030) is located in the previously identified core region of the origin and is required for efficient amplification of oriLyt. It was determined that a 14-bp novel DNA motif (oriLyt promoter activation element), which was initially identified as a binding element for the immediate-early protein IE2, was essential for oriLytPM activity. In Vero cells the oriLytPM was constitutively active and strongly repressed by IE2, but it was reactivated by UL84. In contrast, transfection of the oriLytPM into human fibroblasts resulted in a very low basal level of promoter activity that was dramatically up-regulated upon infection with HCMV. Cotransfection assays demonstrated that the transfection of UL84 along with IE2 transactivated the oriLytPM in human fibroblasts. Further activation was observed upon cotransfection of the set of plasmids expressing the entire replication complex. Efficient oriLyt amplification in the absence of IE2 in human fibroblasts was observed by replacing the oriLytPM with the simian virus 40 early promoter. Under these conditions, however, UL84 was still required for amplification of oriLyt. These results suggest that the mechanism of initiation of HCMV lytic replication in part involves transcriptional activation.


Journal of Virology | 2007

Human Cytomegalovirus UL84 Interacts with an RNA Stem-Loop Sequence Found within the RNA/DNA Hybrid Region of oriLyt

Kelly S. Colletti; Kate Smallenburg; Yiyang Xu; Gregory S. Pari

ABSTRACT Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the complex cis-acting oriLyt region, which spans nearly 3 kb. DNA synthesis requires six core proteins together with UL84 and IE2. Previously, two essential regions were identified within oriLyt. Essential region I (nucleotides [nt] 92209 to 92573) can be replaced with the constitutively active simian virus 40 promoter, which in turn eliminates the requirement for IE2 in the origin-dependent transient-replication assay. Essential region II (nt 92979 to 93513) contains two elements of interest: an RNA/DNA hybrid domain and an inverted repeat sequence capable of forming a stem-loop structure. Our studies now reveal for the first time that UL84 interacts with a stem-loop RNA oligonucleotide in vitro, and although UL84 interacted with other nucleic acid substrates, a specific interaction occurred only with the RNA stem-loop. Increasing concentrations of purified UL84 produced a remarkable downward-staircase pattern, which is not due to a nuclease activity but is dependent upon the presence of secondary structures, suggesting that UL84 modifies the conformation of the RNA substrate. Cross-linking experiments show that UL84 possibly changes the conformation of the RNA substrate. The addition of purified IE2 to the in vitro binding reaction did not affect binding to the stem-loop structure. Chromatin immunoprecipitation assays performed using infected cells and purified virus show that UL84 is bound to oriLyt in a region adjacent to the RNA/DNA hybrid and the stem-loop structure. These results solidify UL84 as the potential initiator of HCMV DNA replication through a unique interaction with a conserved RNA stem-loop structure within oriLyt.


Journal of Virology | 2004

Human Cytomegalovirus UL84 Oligomerization and Heterodimerization Domains Act as Transdominant Inhibitors of oriLyt-Dependent DNA Replication: Evidence that IE2-UL84 and UL84-UL84 Interactions Are Required for Lytic DNA Replication

Kelly S. Colletti; Yiyang Xu; Sylvia A. Cei; Margaret Tarrant; Gregory S. Pari

ABSTRACT Human cytomegalovirus (HCMV) UL84 encodes a 75-kDa protein required for oriLyt-dependent DNA replication and interacts with IE2 in infected and transfected cells. UL84 localizes to the nucleus of transfected and infected cells and is found in viral replication compartments. In transient assays it was shown that UL84 can interfere with the IE2-mediated transactivation of the UL112/113 promoter of HCMV. To determine whether UL84 protein-protein interactions are necessary for lytic DNA synthesis, we purified UL84 and used this protein to generate a monoclonal antibody. Using this antibody, we now show that UL84 forms a stable interaction with itself in vivo. The point of self-interaction maps to a region of the protein between amino acids 151 and 200, a domain that contains a series of highly charged amino acid residues. Coimmunoprecipitation assays determined that UL84 interacts with a protein domain present within the first 215 amino acids of IE2. We also show that an intact leucine zipper domain of UL84 is required for a stable interaction with IE2 and UL84 leucine zipper mutants fail to complement oriLyt-dependent DNA replication. UL84 leucine zipper mutants no longer interfere with IE2-mediated transactivation of the UL112/113 promoter, confirming that the leucine zipper is essential for a functional interaction with IE2. In addition, we demonstrate that both the leucine zipper and oligomerization domains of UL84 can act as transdominant-negative inhibitors of lytic replication in the transient assay, strongly suggesting that both an IE2-UL84 and a UL84-UL84 interaction are required for DNA synthesis.


Journal of Virology | 2002

Human cytomegalovirus UL84 localizes to the cell nucleus via a nuclear localization signal and is a component of viral replication compartments.

Yiyang Xu; Kelly S. Colletti; Gregory S. Pari

ABSTRACT The UL84 open reading frame encodes a protein that is required for origin-dependent DNA replication and interacts with the immediate-early protein IE2 in lytically infected cells. Transfection of UL84 expression constructs showed that UL84 localized to the nucleus of transfected cells in the absence of any other viral proteins and displayed a punctate speckled fluorescent staining pattern. Cotransfection of all the human cytomegalovirus replication proteins and oriLyt, along with pUL84-EGFP, showed that UL84 colocalized with UL44 (polymerase accessory protein) in replication compartments. Experiments using infected human fibroblasts demonstrated that UL84 also colocalized with UL44 and IE2 in viral replication compartments in infected cells. A nuclear localization signal was identified using plasmid constructs expressing truncation mutants of the UL84 protein in transient transfection assays. Transfection assays showed that UL84 failed to localize to the nucleus when 200 amino acids of the N terminus were deleted. Inspection of the UL84 amino acid sequence revealed a consensus putative nuclear localization signal between amino acids 160 and 171 (PEKKKEKQEKK) of the UL84 protein.


Journal of Virology | 2007

Overexpression of the Kaposi's Sarcoma-Associated Herpesvirus Transactivator K-Rta Can Complement a K-bZIP Deletion BACmid and Yields an Enhanced Growth Phenotype

Taeko Kato-Noah; Yiyang Xu; Cyprian C. Rossetto; Kelly S. Colletti; Iva Papousková; Gregory S. Pari

ABSTRACT Kaposis sarcoma-associated herpesvirus/human herpesvirus 8 (HHV8) ORF50 encodes a transactivator, K-Rta, which functions as the switch from latent to lytic virus replication. K-bZIP interacts with K-Rta and can repress its transactivation activity for some viral promoters. Both K-Rta and K-bZIP are required for origin-dependent DNA replication. To determine the role of K-bZIP in the context of the viral genome, we generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a deletion in the K-bZIP open reading frame. This BACmid, BAC36ΔK8, displayed an enhanced growth phenotype with respect to virus production and accumulation of virus-encoded mRNAs measured by real-time PCR when K-Rta was used to induce the virus lytic cycle. Conversely, induction of the virus lytic cycle using tetradecanoyl phorbol acetate/n-butyrate resulted in no virus production and an aberrant gene expression pattern from BAC36ΔK8-containing cells compared to wild-type (wt) BAC. This null virus phenotype was efficiently complemented by the expression of K-bZIP in trans, restoring virus production to wt BAC levels. Immunofluorescence staining revealed that subcellular localization of K-Rta was unchanged; however, a disruption of LANA subcellular localization was observed in cells harboring BAC36ΔK8, suggesting that K-bZIP influences LANA localization. Coimmunoprecipitation experiments confirmed that K-bZIP interacts with LANA in BCBL-1 cells and in cotransfection assays. Lastly, the chromatin immunoprecipitation assay revealed that, in an environment where K-Rta is overexpressed and in the absence of K-bZIP, K-Rta binds to CAAT enhancer binding protein α sites within oriLyt, suggesting that it is K-Rta that supplies an essential replication function and that K-bZIP may serve to augment or facilitate the interaction of K-Rta with oriLyt.


Journal of Virology | 2001

Identification of the Rhesus Macaque Rhadinovirus Lytic Origin of DNA Replication

Gregory S. Pari; David P. AuCoin; Kelly S. Colletti; Sylvia A. Cei; Veronica S. Kirchoff; Scott W. Wong

ABSTRACT We have identified a lytic origin of DNA replication (oriLyt) for rhesus macaque rhadinovirus (RRV), the rhesus macaque homolog of human herpesvirus 8 (HHV-8), also known as Kaposis sarcoma-associated herpesvirus. RRV oriLyt maps to the region of the genome between open reading frame 69 (ORF69) and ORF71 (vFLIP) and is composed of an upstream A+T-rich region followed by a short (300-bp) downstream G+C-rich DNA sequence. A set of overlapping cosmids corresponding to the entire genome of RRV was capable of complementing oriLyt-dependent DNA replication only when additional ORF50 was supplied as an expression plasmid in the transfection mixture, suggesting that the level of ORF50 protein originating from input cosmid DNA was insufficient. The requirement of RRV ORF50 in the cotransfection replication assay may also suggest a direct role for this protein in DNA replication. RRV oriLyt shares a high degree of nucleotide sequence and G+C base distribution with the corresponding loci in HHV-8.


Virology | 2004

Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP).

David P. AuCoin; Kelly S. Colletti; Sylvia A. Cei; Iva Papousková; Margaret Tarrant; Gregory S. Pari

Collaboration


Dive into the Kelly S. Colletti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge