Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly Stefano Cole is active.

Publication


Featured researches published by Kelly Stefano Cole.


PLOS ONE | 2008

Cross-Clade Protective Immune Responses to Influenza Viruses with H5N1 HA and NA Elicited by an Influenza Virus-Like Particle

Rick A. Bright; Donald M. Carter; Corey J. Crevar; Franklin R. Toapanta; Jonathan D. Steckbeck; Kelly Stefano Cole; Niranjan M. Kumar; Peter Pushko; Gale Smith; Terrence M. Tumpey; Ted M. Ross

Background Vaccination is a cost-effective counter-measure to the threat of seasonal or pandemic outbreaks of influenza. To address the need for improved influenza vaccines and alternatives to egg-based manufacturing, we have engineered an influenza virus-like particle (VLP) as a new generation of non-egg or non-mammalian cell culture-based candidate vaccine. Methodology/Principal Findings We generated from a baculovirus expression system using insect cells, a non-infectious recombinant VLP vaccine from both influenza A H5N1 clade 1 and clade 2 isolates with pandemic potential. VLPs were administered to mice in either a one-dose or two-dose regimen and the immune responses were compared to those induced by recombinant hemagglutinin (rHA). Both humoral and cellular responses were analyzed. Mice vaccinated with VLPs were protected against challenge with lethal reassortant viruses expressing the H5N1 HA and NA, regardless if the H5N1 clade was homologous or heterologous to the vaccine. However, rHA-vaccinated mice showed considerable weight loss and death following challenge with the heterovariant clade virus. Protection against death induced by VLPs was independent of the pre-challenge HAI titer or cell-mediated responses to HA or M1 since vaccinated mice, with low to undetectable cross-clade HAI antibodies or cellular responses to influenza antigens, were still protected from a lethal viral challenge. However, an apparent association rate of antibody binding to HA correlated with protection and was enhanced using VLPs, particularly when delivered intranasally, compared to rHA vaccines. Conclusion/Significance This is the first report describing the use of an H5N1 VLP vaccine created from a clade 2 isolate. The results show that a non-replicating virus-like particle is effective at eliciting a broadened, cross-clade protective immune response to proteins from emerging H5N1 influenza isolates giving rise to a potential pandemic influenza vaccine candidate for humans that can be stockpiled for use in the event of an outbreak of H5N1 influenza.


The Journal of Infectious Diseases | 1998

Passive Immunization of Newborn Rhesus Macaques Prevents Oral Simian Immunodeficiency Virus Infection

Koen K. A. Van Rompay; Christopher J. Berardi; Stephan Dillard-Telm; Ross P. Tarara; Don R. Canfield; Celia R. Valverde; David C. Montefiori; Kelly Stefano Cole; Ronald C. Montelaro; Christopher J. Miller; Marta L. Marthas

To determine if passively acquired antiviral antibodies modulate virus transmission and disease progression in human pediatric AIDS, the potential of pre- and postexposure passive immunization with hyperimmune serum to prevent oral simian immunodeficiency virus (SIV) infection or disease progression in newborn rhesus macaques was tested. Untreated neonates became infected after oral SIV inoculation and had high viremia, and most animals developed fatal AIDS within 3 months. In contrast, SIV hyperimmune serum given subcutaneously prior to oral SIV inoculation protected 6 newborns against infection. When this SIV hyperimmune serum was given to 3 newborns 3 weeks after oral SIV inoculation, viremia was not reduced, and all 3 infants died within 3 months of age due to AIDS and immune-complex disease. These results suggest that passively acquired antihuman immunodeficiency virus (HIV) IgG may decrease perinatal HIV transmission. However, anti-HIV IgG may not impart therapeutic benefit to infants with established HIV infection.


Journal of Immunology | 2007

Virally Induced CD4 + T Cell Depletion Is Not Sufficient to Induce AIDS in a Natural Host

Jeffrey M. Milush; Jacqueline D. Reeves; Shari N. Gordon; Dejiang Zhou; Alagar Muthukumar; David A. Kosub; Elizabeth Chacko; Luis D. Giavedoni; Chris Ibegbu; Kelly Stefano Cole; John L. Miamidian; Mirko Paiardini; Ashley P. Barry; Silvija I. Staprans; Guido Silvestri; Donald L. Sodora

Peripheral blood CD4+ T cell counts are a key measure for assessing disease progression and need for antiretroviral therapy in HIV-infected patients. More recently, studies have demonstrated a dramatic depletion of mucosal CD4+ T cells during acute infection that is maintained during chronic pathogenic HIV as well as SIV infection. A different clinical disease course is observed during the infection of natural hosts of SIV infection, such as sooty mangabeys (Cercocebus atys), which typically do not progress to AIDS. Previous studies have determined that SIV+ mangabeys generally maintain healthy levels of CD4+ T cells despite having viral replication comparable to HIV-infected patients. In this study, we identify the emergence of a multitropic (R5/X4/R8-using) SIV infection after 43 or 71 wk postinfection in two mangabeys that is associated with an extreme, persistent (>5.5 years), and generalized loss of CD4+ T cells (5–80 cells/μl of blood) in the absence of clinical signs of AIDS. This study demonstrates that generalized CD4+ T cell depletion from the blood and mucosal tissues is not sufficient to induce AIDS in this natural host species. Rather, AIDS pathogenesis appears to be the cumulative result of multiple aberrant immunologic parameters that include CD4+ T cell depletion, generalized immune activation, and depletion/dysfunction of non-CD4+ T cells. Therefore, these data provide a rationale for investigating multifaceted therapeutic strategies to prevent progression to AIDS, even following dramatic CD4 depletion, such that HIV+ humans can survive normal life spans analogous to what occurs naturally in SIV+ mangabeys.


Journal of Virology | 2003

Immunization of Newborn Rhesus Macaques with Simian Immunodeficiency Virus (SIV) Vaccines Prolongs Survival after Oral Challenge with Virulent SIVmac251

Koen K. A. Van Rompay; Jennifer L. Greenier; Kelly Stefano Cole; Patricia L. Earl; Bernard Moss; Jonathan D. Steckbeck; Bapi Pahar; Tracy Rourke; Ronald C. Montelaro; Don R. Canfield; Ross P. Tarara; Christopher J. Miller; Michael B. McChesney; Marta L. Marthas

ABSTRACT There is an urgent need for active immunization strategies that, if administered shortly after birth, could protect infants in developing countries from acquiring human immunodeficiency virus (HIV) infection through breast-feeding. Better knowledge of the immunogenic properties of vaccine candidates in infants and of the effect of maternal antibodies on vaccine efficacy will aid in the development of such a neonatal HIV vaccine. Simian immunodeficiency virus (SIV) infection of infant macaques is a useful animal model of pediatric HIV infection with which to address these questions. Groups of infant macaques were immunized at birth and 3 weeks of age with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol, and Env (MVA-SIVgpe) or live-attenuated SIVmac1A11. One MVA-SIVgpe-immunized group had maternally derived anti-SIV antibodies prior to immunization. Animals were challenged orally at 4 weeks of age with a genetically heterogeneous stock of virulent SIVmac251. Although all animals became infected, the immunized animals mounted better antiviral antibody responses, controlled virus levels more effectively, and had a longer disease-free survival than the unvaccinated infected monkeys. Maternal antibodies did not significantly reduce the efficacy of the MVA-SIVgpe vaccine. In conclusion, although the tested vaccines delayed the onset of AIDS, further studies are warranted to determine whether a vaccine that elicits stronger early immune responses at the time of virus exposure may be able to prevent viral infection or AIDS in infants.


Immunology and Cell Biology | 1997

Gene gun-based nucleic acid immunization alone or in combination with recombinant vaccinia vectors suppresses virus burden in rhesus macaques challenged with a heterologous SIV

Deborah H. Fuller; Laura Simpson; Kelly Stefano Cole; Janice E. Clements; Dennis L Panicali; Ronald C. Montelaro; Michael Murphey-Corb; Joel R. Haynes

Gene gun‐based DNA immunization alone or in combination with recombinant vaccinia vectors was evaluated for the ability to elicit protective immune responses in rhesus macaques challenged with a pathogenic, heterologous simian immunodeficiency virus (SIV). Six monkeys primed with seven consecutive doses of DNA encoding SIV mac239 gpl20 and gpl60 (DNA+DNA) were divided into two groups. Three of these animals received another DNA booster immunization and the remaining three received a booster immunization containing a homologous, live recombinant vaccinia virus expressing SIV mac251gpl60 (DNA+VAC). In addition, a group of 15 animals primed with recombinant vaccinia vectors were divided into two groups. One group of six monkeys received another immunization of vaccinia (VAC+VAC) and the other nine animals received a DNA (mac239) booster immunization (VAC+DNA). Geometric mean end‐point IgG titres in the DNA+VAC and VAC+DNA groups were substantially higher than the responses seen in the DNA+VAC and VAC+DNA groups, demonstrating a synergistic relationship between DNA‐based vaccines and recombinant vaccinia virus‐based vaccines. All vaccinates and five naive controls were challenged 19 weeks after the final booster immunization with 10 animal infectious doses of SIVdelta/b670. The vaccines did not prevent infection. However, all vaccine groups showed significant virus load reductions from seven to 56 days post challenge when compared to controls. Although the DNA+DNA group developed the lowest prechallenge antibody responses, the most significant reduction (200‐fold) in virus load was associated with this group. In addition, a significant delay in CD4+ T cell loss relative to controls was observed in the DNA+DNA group. These results demonstrate that a gene gun‐based DNA vaccine provided some attenuation of infection and CD4+ T cell loss after a heterologous challenge.


Journal of Virology | 2006

Rhesus Macaque Polyclonal and Monoclonal Antibodies Inhibit Simian Immunodeficiency Virus in the Presence of Human or Autologous Rhesus Effector Cells

Donald N. Forthal; Gary Landucci; Kelly Stefano Cole; Marta L. Marthas; Juan C. Becerra; Koen K. A. Van Rompay

ABSTRACT Although antibodies can prevent or modulate lentivirus infections in nonhuman primates, the biological functions of antibody responsible for such effects are not known. We sought to determine the role of antibody-dependent cell-mediated virus inhibition (ADCVI), an antibody function that inhibits virus yield from infected cells in the presence of Fc receptor-bearing effector cells, in preventing or controlling SIVmac251 infection in rhesus macaques (Macaca mulatta). Using CEMx174 cells infected with simian immunodeficiency virus mac251 (SIVmac251), both polyclonal and monoclonal anti-SIV antibodies were capable of potent virus inhibition in the presence of human peripheral blood mononuclear cell (PBMC) effector cells. In the absence of effector cells, virus inhibition was generally very poor. PBMCs from healthy rhesus macaques were also capable of mediating virus inhibition either against SIVmac251-infected CEMx174 cells or against infected, autologous rhesus target cells. We identified both CD14+ cells and, to a lesser extent, CD8+ cells as the effector cell population in the rhesus PBMCs. Finally, pooled, nonneutralizing SIV-antibody-positive serum, shown in a previous study to prevent infection of neonatal macaques after oral SIVmac251 challenge, had potent virus-inhibitory activity in the presence of effector cells; intact immunoglobulin G, rather than F(ab′)2, was required for such activity. This is the first demonstration of both humoral and cellular ADCVI functions in the macaque-SIV model. ADCVI activity in nonneutralizing serum that prevents SIV infection suggests that ADCVI may be a protective immune function. Finally, our data underscore the potential importance of Fc-Fc receptor interactions in mediating biological activities of antibody.


Journal of Clinical Investigation | 2011

Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells

Jeffrey M. Milush; Kiran D. Mir; Vasudha Sundaravaradan; Shari N. Gordon; Jessica C. Engram; Christopher A. Cano; Jacqueline D. Reeves; Elizabeth D. Anton; Eduardo O’Neill; Eboneé N. Butler; Kathy Hancock; Kelly Stefano Cole; Jason M. Brenchley; James G. Else; Guido Silvestri; Donald L. Sodora

SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4(+) T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3(+)CD4(-)CD8(-) T cells (double-negative T cells) partially compensates for CD4(+) T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4(+) T cells to SIV-negative animals resulted in rapid loss of CD4(+) T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4(+) T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4(+) T cell-like helper functions upon SIV-induced CD4(+) T cell depletion in this species.


Journal of Virology | 2004

Removal of N-Linked Glycosylation Sites in the V1 Region of Simian Immunodeficiency Virus gp120 Results in Redirection of B-Cell Responses to V3

Kelly Stefano Cole; Jonathan D. Steckbeck; Jennifer L. Rowles; Ronald C. Desrosiers; Ronald C. Montelaro

ABSTRACT One mechanism of immune evasion utilized by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope glycoproteins is the presence of a dense carbohydrate shield. Accumulating evidence from in vitro and in vivo experiments suggests that alterations in N-linked glycosylation of SIV gp120 can enhance host humoral immune responses that may be involved in immune control. The present study was designed to determine the ability of glycosylation mutant viruses to redirect antibody responses to shielded envelope epitopes. The influence of glycosylation on the maturation and specificity of antibody responses elicited by glycosylation mutant viruses containing mutations of specific N-linked sites in and near the V1 and V2 regions of SIVmac239 gp120 was determined. Results from these studies demonstrated a remarkably similar maturation of antibody responses to native, fully glycosylated envelope proteins. However, analyses of antibodies to defined envelope domains revealed that mutation of glycosylation sites in V1 resulted in increased antibody recognition to epitopes in V1. In addition, we demonstrated for the first time that mutation of glycosylation sites in V1 resulted in a redirection of antibody responses to the V3 loop. Taken together, these results demonstrate that N-linked glycosylation is a determinant of SIV envelope B-cell immunogenicity in addition to in vitro antigenicity. In addition, our results demonstrate that the absence of N-linked carbohydrates at specific sites can influence the exposure of epitopes quite distant in the linear sequence.


Journal of Virology | 2010

Evidence of early B-cell dysregulation in simian immunodeficiency virus infection: Rapid depletion of naïve and memory B-cell subsets with delayed reconstitution of the naïve B-cell population

David Kuhrt; Seth A. Faith; Amanda Leone; Mukta Rohankedkar; Donald L. Sodora; Louis J. Picker; Kelly Stefano Cole

ABSTRACT Despite eliciting a robust antibody response in humans, several studies in human immunodeficiency virus (HIV)-infected patients have demonstrated the presence of B-cell deficiencies during the chronic stage of infection. While several explanations for the HIV-induced B-cell deficit have been proposed, a clear mechanistic understanding of this loss of B-cell functionality is not known. This study utilizes simian immunodeficiency virus (SIV) infection of rhesus macaques to assess B-cell population dynamics beginning at the acute phase and continuing through the chronic phase of infection. Flow cytometric assessment demonstrated a significant early depletion of both naïve and memory B-cell subsets in the peripheral blood, with differential kinetics for recovery of these populations. Furthermore, the altered numbers of naïve and memory B-cell subsets in these animals corresponded with increased B-cell activation and altered proliferation profiles during the acute phase of infection. Finally, all animals produced high titers of antibody, demonstrating that the measurement of virus-specific antibody responses was not an accurate reflection of alterations in the B-cell compartment. These data indicate that dynamic B-cell population changes in SIV-infected macaques arise very early after infection at the precise time when an effective adaptive immune response is needed.


Journal of Virology | 2005

Kinetic Rates of Antibody Binding Correlate with Neutralization Sensitivity of Variant Simian Immunodeficiency Virus Strains

Jonathan D. Steckbeck; Irina Orlov; Andrew Chow; Heather Grieser; Kenneth Miller; JoAnne Bruno; James E. Robinson; Ronald C. Montelaro; Kelly Stefano Cole

ABSTRACT Increasing evidence suggests that an effective AIDS vaccine will need to elicit both broadly reactive humoral and cellular immune responses. Potent and cross-reactive neutralization of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) by polyclonal and monoclonal antibodies is well documented. However, the mechanisms of antibody-mediated neutralization have not been defined. The current study was designed to determine whether the specificity and quantitative properties of antibody binding to SIV envelope proteins correlate with neutralization. Using a panel of rhesus monoclonal antibodies previously characterized for their ability to bind and neutralize variant SIVs, we compared the kinetic rates and affinity of antibody binding to soluble envelope trimers by using surface plasmon resonance. We identified significant differences in the kinetic rates but not the affinity of monoclonal antibody binding to the neutralization-sensitive SIV/17E-CL and neutralization-resistant SIVmac239 envelope proteins that correlated with the neutralization sensitivities of the corresponding virus strains. These results suggest for the first time that neutralization resistance may be related to quantitative differences in the rates but not the affinity of the antibody-envelope interaction and may provide one mechanism for the inherent resistance of SIVmac239 to neutralization in vitro. Further, we provide evidence that factors in addition to antibody binding, such as epitope specificity, contribute to the mechanisms of neutralization of SIV/17E-CL in vitro. This study will impact the method by which HIV/SIV vaccines are evaluated and will influence the design of candidate AIDS vaccines capable of eliciting effective neutralizing antibody responses.

Collaboration


Dive into the Kelly Stefano Cole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge