Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly Suino-Powell is active.

Publication


Featured researches published by Kelly Suino-Powell.


Nature | 2009

A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors

Karsten Melcher; Ley-Moy Ng; X. Edward Zhou; Fen-Fen Soon; Yong Xu; Kelly Suino-Powell; Sang-Youl Park; Joshua J. Weiner; Hiroaki Fujii; Viswanathan Chinnusamy; Amanda Kovach; Jun Li; Yonghong Wang; Jiayang Li; Francis C. Peterson; Davin R. Jensen; Eu Leong Yong; Brian F. Volkman; Sean R. Cutler; Jian-Kang Zhu; H. Eric Xu

Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2–ABA–PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate–latch–lock mechanism underlying ABA signalling.


Cell | 2006

Identification of Ligands for DAF-12 that Govern Dauer Formation and Reproduction in C. elegans

Daniel L. Motola; Carolyn L. Cummins; Veerle Rottiers; Kamalesh K. Sharma; Tingting Li; Yong Li; Kelly Suino-Powell; H. Eric Xu; Richard J. Auchus; Adam Antebi; David J. Mangelsdorf

In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.


Nature | 2015

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Science | 2011

FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis.

Serkan Kir; Sara A. Beddow; Varman T. Samuel; Paul Miller; Stephen F. Previs; Kelly Suino-Powell; H. Eric Xu; Gerald I. Shulman; Steven A. Kliewer; David J. Mangelsdorf

Fibroblast growth factor 19 regulates liver metabolism through a mechanism distinct from that of insulin. Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.


Science | 2012

Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

Fen Fen Soon; Ley Moy Ng; X. Edward Zhou; Graham M. West; Amanda Kovach; M. H.Eileen Tan; Kelly Suino-Powell; Yuanzheng He; Yong Xu; Michael J. Chalmers; Joseph S. Brunzelle; Huiming Zhang; Huaiyu Yang; Hualiang Jiang; Jun Li; Eu Leong Yong; Sean R. Cutler; Jian-Kang Zhu; Patrick R. Griffin; Karsten Melcher; H. Eric Xu

Musical Chairs The plant hormone abscisic acid (ABA) helps plants to respond to changes in the environment, such as drought. Physiological responses are initiated when ABA binds to its receptor. In the absence of ABA, downstream kinases are held inactive by phosphatases. Soon et al. (p. 85, published online 24 November; see the Perspective by Leung) now show that both the hormone-receptor complex and the downstream kinase bind to the same site on the phosphatase. Thus, in the presence of hormone, the phosphatase is occupied and unable to interfere with downstream kinase activity. Two players and one chair regulate this plant hormone signaling cascade. Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.


Nature Medicine | 2006

Identification of a hormonal basis for gallbladder filling

Mihwa Choi; Antonio Moschetta; Angie L. Bookout; Li Peng; Michihisa Umetani; Sam R. Holmstrom; Kelly Suino-Powell; H. Eric Xu; James A. Richardson; Robert D. Gerard; David J. Mangelsdorf; Steven A. Kliewer

The cycle of gallbladder filling and emptying controls the flow of bile into the intestine for digestion. Here we show that fibroblast growth factor-15, a hormone made by the distal small intestine in response to bile acids, is required for gallbladder filling. These studies demonstrate that gallbladder filling is actively regulated by an endocrine pathway and suggest a postprandial timing mechanism that controls gallbladder motility.


Nature Structural & Molecular Biology | 2008

Molecular recognition of nitrated fatty acids by PPAR[gamma]

Yong Li; Jifeng Zhang; Francisco J. Schopfer; Dariusz Martynowski; Minerva T Garcia-Barrio; Amanda Kovach; Kelly Suino-Powell; Paul R. S. Baker; Bruce A. Freeman; Y. Eugene Chen; H. Eric Xu

Peroxisome proliferator activated receptor-γ (PPARγ) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPARγ ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPARγ. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPARγ discrimination of various naturally occurring fatty acid derivatives.


PLOS Biology | 2008

Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

Schoen W. Kruse; Kelly Suino-Powell; X. Edward Zhou; Jennifer E Kretschman; Ross Reynolds; Clemens Vonrhein; Yong Xu; Liliang Wang; Sophia Y. Tsai; Ming-Jer Tsai; H. Eric Xu

The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 Å crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix α10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.


Nature Structural & Molecular Biology | 2010

Identification and mechanism of ABA receptor antagonism

Karsten Melcher; Yong Xu; Ley-Moy Ng; X. Edward Zhou; Fen-Fen Soon; Viswanathan Chinnusamy; Kelly Suino-Powell; Amanda Kovach; Fook S. Tham; Sean R. Cutler; Jun Li; Eu Leong Yong; Jian-Kang Zhu; H. Eric Xu

The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2–pyrabactin and PYL1–pyrabactin–ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.


Genes & Development | 2009

Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin–proteasomal degradation

Ji Miao; Zhen Xiao; Deepthi Kanamaluru; Gyesik Min; Peter M. Yau; Timothy D. Veenstra; Ewa Ellis; Steve Strom; Kelly Suino-Powell; H. Eric Xu; Jongsook Kim Kemper

Small Heterodimer Partner (SHP) inhibits activities of numerous transcription factors involved in diverse biological pathways. As an important metabolic regulator, SHP plays a key role in maintaining cholesterol and bile acid homeostasis by inhibiting cholesterol conversion to bile acids. While SHP gene induction by increased bile acids is well established, whether SHP activity is also modulated remains unknown. Here, we report surprising findings that SHP is a rapidly degraded protein via the ubiquitin-proteasomal pathway and that bile acids or bile acid-induced intestinal fibroblast growth factor 19 (FGF19) increases stability of hepatic SHP by inhibiting proteasomal degradation in an extracellular signal-regulated kinase (ERK)-dependent manner. SHP was ubiquitinated at Lys122 and Lys123, and mutation of these sites altered its stability and repression activity. Tandem mass spectrometry revealed that upon bile acid treatment, SHP was phosphorylated at Ser26, within an ERK motif in SHP, and mutation of this site dramatically abolished SHP stability. Surprisingly, SHP stability was abnormally elevated in ob/ob mice and diet-induced obese mice. These results demonstrate an important role for regulation of SHP stability in bile acid signaling in normal conditions, and that abnormal stabilization of SHP may be associated with metabolic disorders, including obesity and diabetes.

Collaboration


Dive into the Kelly Suino-Powell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eu Leong Yong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

David J. Mangelsdorf

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven A. Kliewer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge