Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelsey B. Mathieu is active.

Publication


Featured researches published by Kelsey B. Mathieu.


Ultrasound in Obstetrics & Gynecology | 2018

Screening for ovarian cancer: imaging challenges and opportunities for improvement

Kelsey B. Mathieu; Deepak G. Bedi; Sara L. Thrower; Aliya Qayyum; Robert C. Bast

The United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) recently reported a reduction in the average overall mortality among ovarian cancer patients screened with an annual sequential, multimodal strategy that tracked biomarker CA125 over time, where increasing serum CA125 levels prompted ultrasound. However, multiple cases were documented wherein serum CA125 levels were rising, but ultrasound screens were normal, thus delaying surgical intervention. A significant factor which could contribute to false negatives is that many aggressive ovarian cancers are believed to arise from epithelial cells on the fimbriae of the fallopian tubes, which are not readily imaged. Moreover, because only a fraction of metastatic tumors may reach a sonographically-detectable size before they metastasize, annual screening with ultrasound may fail to detect a large fraction of early-stage ovarian cancers. The ability to detect ovarian carcinomas before they metastasize is critical and future efforts towards improving screening should focus on identifying unique features specific to aggressive, early-stage tumors, as well as improving imaging sensitivity to allow for detection of tubal lesions. Implementation of a three-stage multimodal screening strategy in which a third modality is employed in cases where the first-line blood-based assay is positive and the second-line ultrasound exam is negative may also prove fruitful in detecting early-stage cases missed by ultrasound.


Scientific Reports | 2017

A Multi-Institutional Comparison of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameter Calculations

Rachel B. Ger; Abdallah S.R. Mohamed; Musaddiq J. Awan; Yao Ding; Kimberly Li; Xenia Fave; Andrew Beers; Brandon Driscoll; Hesham Elhalawani; David A. Hormuth; Petra J. van Houdt; Renjie He; Shouhao Zhou; Kelsey B. Mathieu; Heng Li; C. Coolens; Caroline Chung; James A. Bankson; Wei Huang; Jihong Wang; Vlad C. Sandulache; Stephen Y. Lai; Rebecca M. Howell; R. Jason Stafford; Thomas E. Yankeelov; Uulke A. van der Heide; Steven J. Frank; Daniel P. Barboriak; John D. Hazle; L Court

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides quantitative metrics (e.g. Ktrans, ve) via pharmacokinetic models. We tested inter-algorithm variability in these quantitative metrics with 11 published DCE-MRI algorithms, all implementing Tofts-Kermode or extended Tofts pharmacokinetic models. Digital reference objects (DROs) with known Ktrans and ve values were used to assess performance at varying noise levels. Additionally, DCE-MRI data from 15 head and neck squamous cell carcinoma patients over 3 time-points during chemoradiotherapy were used to ascertain Ktrans and ve kinetic trends across algorithms. Algorithms performed well (less than 3% average error) when no noise was present in the DRO. With noise, 87% of Ktrans and 84% of ve algorithm-DRO combinations were generally in the correct order. Low Krippendorff’s alpha values showed that algorithms could not consistently classify patients as above or below the median for a given algorithm at each time point or for differences in values between time points. A majority of the algorithms produced a significant Spearman correlation in ve of the primary gross tumor volume with time. Algorithmic differences in Ktrans and ve values over time indicate limitations in combining/comparing data from distinct DCE-MRI model implementations. Careful cross-algorithm quality-assurance must be utilized as DCE-MRI results may not be interpretable using differing software.Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides quantitative metrics (e.g. Ktrans, ve) via pharmacokinetic models. We tested inter-algorithm variability in these quantitative metrics with 11 published DCE-MRI algorithms, all implementing Tofts-Kermode or extended Tofts pharmacokinetic models. Digital reference objects (DROs) with known Ktrans and ve values were used to assess performance at varying noise levels. Additionally, DCE-MRI data from 15 head and neck squamous cell carcinoma patients over 3 time-points during chemoradiotherapy were used to ascertain Ktrans and ve kinetic trends across algorithms. Algorithms performed well (less than 3% average error) when no noise was present in the DRO. With noise, 87% of Ktrans and 84% of ve algorithm-DRO combinations were generally in the correct order. Low Krippendorff’s alpha values showed that algorithms could not consistently classify patients as above or below the median for a given algorithm at each time point or for differences in values between time points. A majority of the algorithms produced a significant Spearman correlation in ve of the primary gross tumor volume with time. Algorithmic differences in Ktrans and ve values over time indicate limitations in combining/comparing data from distinct DCE-MRI model implementations. Careful cross-algorithm quality-assurance must be utilized as DCE-MRI results may not be interpretable using differing software.


Scientific Reports | 2018

Publisher Correction: A Multi-Institutional Comparison of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameter Calculations (Scientific Reports (2017) DOI: 10.1038/s41598-017-11554-w)

Rachel B. Ger; Abdallah S.R. Mohamed; Musaddiq J. Awan; Yao Ding; Kimberly Li; Xenia Fave; Andrew Beers; Brandon Driscoll; Hesham Elhalawani; David A. Hormuth; Petra J. van Houdt; Renjie He; Shouhao Zhou; Kelsey B. Mathieu; Heng Li; C. Coolens; Caroline Chung; James A. Bankson; Wei Huang; Jihong Wang; Vlad C. Sandulache; Stephen Y. Lai; Rebecca M. Howell; R. Jason Stafford; Thomas E. Yankeelov; Uulke A. van der Heide; Steven J. Frank; Daniel P. Barboriak; John D. Hazle; L Court

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.


Scientific Data | 2018

Erratum: Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers

Joint Head; Hesham Elhalawani; Rachel B. Ger; Abdallah S.R. Mohamed; Musaddiq J. Awan; Yao Ding; Kimberly Li; Xenia Fave; Andrew Beers; Brandon Driscoll; David A. Hormuth; Petra J. van Houdt; Renjie He; Shouhao Zhou; Kelsey B. Mathieu; Heng Li; C. Coolens; Caroline Chung; James A. Bankson; Wei Huang; Jihong Wang; Vlad C. Sandulache; Stephen Y. Lai; Rebecca M. Howell; R. Jason Stafford; Thomas E. Yankeelov; Uulke A. van der Heide; Steven J. Frank; Daniel P. Barboriak; John D. Hazle

This corrects the article DOI: 10.1038/sdata.2018.8.


Scientific Data | 2018

Data descriptor: Dynamic contrastenhanced magnetic resonance imaging for head and neck cancers

Hesham Elhalawani; Rachel B. Ger; Abdallah S.R. Mohamed; Musaddiq J. Awan; Yao Ding; Kimberly Li; Xenia Fave; Andrew Beers; Brandon Driscoll; David A. Hormuth; Petra J. van Houdt; Renjie He; Shouhao Zhou; Kelsey B. Mathieu; Heng Li; C. Coolens; Caroline Chung; James A. Bankson; Wei Huang; Jihong Wang; Vlad C. Sandulache; Stephen Y. Lai; Rebecca M. Howell; R. Jason Stafford; Thomas E. Yankeelov; Uulke A. van der Heide; Steven J. Frank; Daniel P. Barboriak; John D. Hazle; L Court

Dynamic myraidpro contrast-enhanced magnetic resonance imaging (DCE-MRI) has been correlated with prognosis in head and neck squamous cell carcinoma as well as with changes in normal tissues. These studies implement different software, either commercial or in-house, and different scan protocols. Thus, the generalizability of the results is not confirmed. To assist in the standardization of quantitative metrics to confirm the generalizability of these previous studies, this data descriptor delineates in detail the DCE-MRI digital imaging and communications in medicine (DICOM) files with DICOM radiation therapy (RT) structure sets and digital reference objects (DROs), as well as, relevant clinical data that encompass a data set that can be used by all software for comparing quantitative metrics. Variable flip angle (VFA) with six flip angles and DCE-MRI scans with a temporal resolution of 5.5 s were acquired in the axial direction on a 3T MR scanner with a field of view of 25.6 cm, slice thickness of 4 mm, and 256×256 matrix size.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Automated algorithms for improved pre-processing of magnetic relaxometry data

Wolfgang Stefan; Kelsey B. Mathieu; Caterina C. Kaffes; Sara L. Thrower; David Fuentes; Javad Sovizi; John D. Hazle

We present a novel method to pre-process magnetic relaxation (MRX) data. The method is used to estimates the initial magnetic field generated by Super Paramagnetic Nano Particles (SPIONs) from decay curves measured by superconducting quantum interference devices (SQUIDs). The curves are measured using a MagSense MRX Instrument (PrecisionMRX, Imagion Biosystems, Albuquerque, NM). We compare the initial field estimates to the standard method used by Imagion Biosystems. As compared to the standard method our new method results in more stable estimates in the presence of noise and allows monitoring of the long term stability of the MagSense MRX instrument. We demonstrate these findings with phantom scans conducted over the period of about one year.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Sensitivity and specificity of a sparse reconstruction algorithm for superparamagnetic relaxometry

Sara L. Thrower; David Fuentes; Wolfgang Stefan; Javad Sovizi; Kelsey B. Mathieu; John D. Hazle

Ovarian cancer survival rates could be greatly improved through effective early detection. However, several clinical studies have shown that proposed screening methodologies have no impact on overall survival. Our lab is participating in the development of a novel nanoparticle imaging device that can be incorporated as a third-line test to improve the specificity and sensitivity of the overall screening program. The device’s highly sensitive detectors can detect the residual magnetic field of only those nanoparticles that have become bound to cancer cells via specific antibody interactions. However, the reconstruction of the bound particle distribution from this residual field map is challenging due to the highly ill-posed nature of the inverse problem. Our lab has developed a sparse reconstruction algorithm to overcome this challenge. Here, we present the results of a blinded phantom study to simulate the pre-clinical scenario of detecting a tumor signal in the presence of a large signal from bound particles in the liver. Overall, our algorithm identified the correct location of bound particle sources with 84% accuracy. We were able to detect as little as 1.6ug of bound particles with 100% accuracy when the source was alone, and as little as 3.13ug when there was a stronger source present. We also show the effect of manual and automatic parameter selection on the performance of the algorithm. These results provide valuable information about the expected performance of the algorithm that we can use to optimize the design of future small animal studies as we work to bring this novel technology to the clinic.


Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging | 2018

Bayesian inference and model selection for physiologically-based pharmacokinetic modeling of superparamagnetic iron oxide nanoparticles

Lynn Bi; Javad Sovizi; Kelsey B. Mathieu; Wolfgang Stefan; Sara L. Thrower; David Fuentes; John D. Hazle

The growing use of superparamagnetic iron oxide nanoparticles (SPIONs) in early cancer detection technologies has created a demand for physiologically-based pharmacokinetic (PBPK) models that accurately model and predict the biodistribution of SPIONs in the mouse and human model. The objective of this work is to use a Bayesian approach built upon nested-sampling to select a model based on qualitative criteria of the fit of the model and the likelihood function landscape, as well as quantitative criteria of the evidence and maximum likelihood values. Four first-order PBPK compartmental models of ranging complexity are considered. Compartments included in the models comprise of a combination of the plasma, liver, spleen, tumor, and “other” (the remaining body tissue), with parameters including the volume, blood flow rate, and plasma:tissue distribution ratios. The model parameters for each model are evaluated using Bayesian inference, in addition to the respective evidence integrals, maximum log-likelihoods, and Bayes factors. The model containing all compartments and the model containing the plasma, liver, tumor and “other” had the highest log-likelihood and evidence values, indicating both a high goodness-of-fit and a high likelihood of the model given the data. This is similarly reflected in a faithful quality-of-fit and non-flat log-likelihood landscapes. Overall, these findings illustrate the strength of the Bayesian model selection framework in ranking different models to determine the best model that accurately represents the experimental data.


Artificial Intelligence in Medicine | 2017

Gaussian process classification of superparamagnetic relaxometry data: Phantom study

Javad Sovizi; Kelsey B. Mathieu; Sara L. Thrower; Wolfgang Stefan; John D. Hazle; David Fuentes

MOTIVATION Superparamagnetic relaxometry (SPMR) is an emerging technology that holds potential for use in early cancer detection. Measurement of the magnetic field after the excitation of cancer-bound superparamagnetic iron oxide nanoparticles (SPIONs) enables the reconstruction of SPIONs spatial distribution and hence tumor detection. However, image reconstruction often requires solving an ill-posed inverse problem that is computationally challenging and sensitive to measurement uncertainty. Moreover, an additional image processing module is required to automatically detect and localize the tumor in the reconstructed image. OBJECTIVE Our goal is to examine the use of data-driven machine learning technique to detect a weak signal induced by a small cluster of SPIONs (surrogate tumor) in presence of background signal and measurement uncertainty. We aim to investigate the performance of both data-driven and image reconstruction models to characterize situations that one can replace the computationally-challenging reconstruction technique by the data-driven model. METHODS We utilize Gaussian process (GP) classification model and a physics-based image reconstruction method, tailored to SPMR datasets that are obtained from (i) in silico simulations designed based on mouse cancer models and (ii) phantom experiments using MagSense system (Imagion Biosystems, Inc.). We investigate the performance of the GP classifier against the reconstruction technique, for different levels of measurement noise, different scenarios of SPIONs distribution, and different concentrations of SPIONs at the surrogate tumor. RESULTS In our in silico source detection analysis, we were able to achieve high sensitivity results using GP model that outperformed the image reconstruction model for various choices of SPIONs concentration at the surrogate tumor and measurement noise levels. Moreover, in our phantom studies we were able to detect the surrogate tumor phantoms with 5% and 7.3% of the total used SPIONs, surrounded by 9 low-concentration phantoms with accuracies of 87.5% and 96.4%, respectively. CONCLUSIONS The GP framework provides acceptable classification accuracies when dealing with in silico and phantom SPMR datasets and can outperform an image reconstruction method for binary classification of SPMR data.


Journal of Clinical Oncology | 2018

Detection and measurement of HER2+ breast cancer cells using tumor-targeted iron oxide nanoparticles and magnetic relaxometry.

Farideh Z. Bischoff; Kelsey B. Mathieu; Lan Pang; Adam Kulp; Zhen Lu; Dale Huber; John D. Hazle; Robert C. Bast; Giulio F. Paciotti

Collaboration


Dive into the Kelsey B. Mathieu's collaboration.

Top Co-Authors

Avatar

John D. Hazle

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Sara L. Thrower

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Fuentes

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Stefan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert C. Bast

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Abdallah S.R. Mohamed

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Hormuth

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Heng Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge