Kelvin Y. Kwan
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelvin Y. Kwan.
Neuron | 2006
Kelvin Y. Kwan; Andrew Allchorne; Melissa A. Vollrath; Adam P. Christensen; Duan-Sun Zhang; Clifford J. Woolf; David P. Corey
TRPA1, a member of the transient receptor potential (TRP) family of ion channels, is expressed by dorsal root ganglion neurons and by cells of the inner ear, where it has proposed roles in sensing sound, painful cold, and irritating chemicals. To test the in vivo roles of TRPA1, we generated a mouse in which the essential exons required for proper function of the Trpa1 gene were deleted. Knockout mice display behavioral deficits in response to mustard oil, to cold ( approximately 0 degrees C), and to punctate mechanical stimuli. These mice have a normal startle reflex to loud noise, a normal sense of balance, a normal auditory brainstem response, and normal transduction currents in vestibular hair cells. TRPA1 is apparently not essential for hair-cell transduction but contributes to the transduction of mechanical, cold, and chemical stimuli in nociceptor sensory neurons.
Nature | 2004
David P. Corey; Jaime García-Añoveros; Jeffrey R. Holt; Kelvin Y. Kwan; Shuh Yow Lin; Melissa A. Vollrath; Andrea Amalfitano; Eunice L.M. Cheung; Bruce H. Derfler; Anne Duggan; Gwenaëlle S. G. Géléoc; Paul A. Gray; Matthew P. Hoffman; Heidi L. Rehm; Daniel Tamasauskas; Duan Sun Zhang
Mechanical deflection of the sensory hair bundles of receptor cells in the inner ear causes ion channels located at the tips of the bundle to open, thereby initiating the perception of sound. Although some protein constituents of the transduction apparatus are known, the mechanically gated transduction channels have not been identified in higher vertebrates. Here, we investigate TRP (transient receptor potential) ion channels as candidates and find one, TRPA1 (also known as ANKTM1), that meets criteria for the transduction channel. The appearance of TRPA1 messenger RNA expression in hair cell epithelia coincides developmentally with the onset of mechanosensitivity. Antibodies to TRPA1 label hair bundles, especially at their tips, and tip labelling disappears when the transduction apparatus is chemically disrupted. Inhibition of TRPA1 protein expression in zebrafish and mouse inner ears inhibits receptor cell function, as assessed with electrical recording and with accumulation of a channel-permeant fluorescent dye. TRPA1 is probably a component of the transduction channel itself.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Yuji Karashima; Karel Talavera; Wouter Everaerts; Annelies Janssens; Kelvin Y. Kwan; Rudi Vennekens; Bernd Nilius; Thomas Voets
TRPA1 functions as an excitatory ionotropic receptor in sensory neurons. It was originally described as a noxious cold-activated channel, but its cold sensitivity has been disputed in later studies, and the contribution of TRPA1 to thermosensing is currently a matter of strong debate. Here, we provide several lines of evidence to establish that TRPA1 acts as a cold sensor in vitro and in vivo. First, we demonstrate that heterologously expressed TRPA1 is activated by cold in a Ca2+-independent and Ca2+ store-independent manner; temperature-dependent gating of TRPA1 is mechanistically analogous to that of other temperature-sensitive TRP channels, and it is preserved after treatment with the TRPA1 agonist mustard oil. Second, we identify and characterize a specific subset of cold-sensitive trigeminal ganglion neurons that is absent in TRPA1-deficient mice. Finally, cold plate and tail-flick experiments reveal TRPA1-dependent, cold-induced nociceptive behavior in mice. We conclude that TRPA1 acts as a major sensor for noxious cold.
The Journal of Neuroscience | 2007
Lindsey J. Macpherson; Bailong Xiao; Kelvin Y. Kwan; Matt J. Petrus; Adrienne E. Dubin; Sun Wook Hwang; Benjamin F. Cravatt; David P. Corey; Ardem Patapoutian
Tissue damage and its downstream consequences are experimentally assayed by formaldehyde application, which indiscriminately modifies proteins and is presumed to cause pain through broadly acting mechanisms. Here we show that formaldehyde activates the ion channel TRPA1 and that TRPA1-deficient mice exhibit dramatically reduced formaldehyde-induced pain responses. 4-Hydroxynonenal, a reactive chemical produced endogenously during oxidative stress, and other related aldehydes also activate TRPA1 in vitro. Furthermore, painful responses to iodoacetamide, a nonspecific cysteine-alkylating compound, are abolished in TRPA1-deficient mice. Therefore, although these reactive chemicals modify many proteins, the associated pain appears mainly dependent on a single ion channel.
The Journal of Neuroscience | 2009
Kelvin Y. Kwan; Joshua M. Glazer; David P. Corey; Frank L. Rice; Cheryl L. Stucky
Transient receptor potential ankyrin 1 (TRPA1) is expressed by nociceptive neurons of the dorsal root ganglia (DRGs) and trigeminal ganglia, but its roles in cold and mechanotransduction are controversial. To determine the contribution of TRPA1 to cold and mechanotransduction in cutaneous primary afferent terminals, we used the ex vivo skin–nerve preparation from Trpa1+/+, Trpa1+/−, and Trpa1−/− adult mouse littermates. Cutaneous fibers from TRPA1-deficient mice showed no deficits in acute cold sensitivity, but they displayed striking deficits in mechanical response properties. C-fiber nociceptors from Trpa1−/− mice exhibited action potential firing rates 50% lower than those in wild-type C-fibers across a wide range of force intensities. Aδ-fiber mechanonociceptors also had reduced firing, but only at high intensity forces (>100 mN). Surprisingly, the firing rates of low-threshold Aβ and D-hair mechanoreceptive fibers were also altered. TRPA1 protein and mRNA expression was assessed in DRG neurons and cutaneous innervation by using Trpa1 in situ hybridization, an antibody for TRPA1, and an antibody for placental alkaline phosphatase (PLAP) in mice in which PLAP was substituted for Trpa1. DRG neurons of all sizes expressed Trpa1 mRNA or PLAP immunoreactivity. TRPA1 or PLAP immunolabeling was detected not only on many thin-caliber axons and intraepidermal endings but also on many large-caliber axons as well as lanceolate and Meissner endings. Epidermal and hair follicle keratinocytes also express TRPA1 message and protein. We propose that TRPA1 modulates mechanotransduction via a cell-autonomous mechanism in nociceptor terminals and possibly through a modulatory role in keratinocytes, which may interact with sensory terminals to modify their mechanical firing properties.
Gastroenterology | 2009
Stuart M. Brierley; Patrick A. Hughes; Amanda J. Page; Kelvin Y. Kwan; Christopher M. Martin; Tracey A. O'Donnell; Nicole J. Cooper; Andrea M. Harrington; Birgit Adam; Tobias Liebregts; Gerald Holtmann; David P. Corey; Grigori Y. Rychkov; L. Ashley Blackshaw
BACKGROUND & AIMS The transient receptor potential (TRP) channel family includes transducers of mechanical and chemical stimuli for visceral sensory neurons. TRP ankyrin 1 (TRPA1) is implicated in inflammatory pain; it interacts with G-protein-coupled receptors, but little is known about its role in the gastrointestinal (GI) tract. Sensory information from the GI tract is conducted via 5 afferent subtypes along 3 pathways. METHODS Nodose and dorsal root ganglia whose neurons innnervate 3 different regions of the GI tract were analyzed from wild-type and TRPA1(-/-) mice using quantitative reverse-transcription polymerase chain reaction, retrograde labeling, and in situ hybridization. Distal colon sections were analyzed by immunohistochemistry. In vitro electrophysiology and pharmacology studies were performed, and colorectal distension and visceromotor responses were measured. Colitis was induced by administration of trinitrobenzene sulphonic acid. RESULTS TRPA1 is required for normal mechano- and chemosensory function in specific subsets of vagal, splanchnic, and pelvic afferents. The behavioral responses to noxious colonic distension were substantially reduced in TRPA1(-/-) mice. TRPA1 agonists caused mechanical hypersensitivity, which increased in mice with colitis. Colonic afferents were activated by bradykinin and capsaicin, which mimic effects of tissue damage; wild-type and TRPA1(-/-) mice had similar direct responses to these 2 stimuli. After activation by bradykinin, wild-type afferents had increased mechanosensitivity, whereas, after capsaicin exposure, mechanosensitivity was reduced: these changes were absent in TRPA1(-/-) mice. No interaction between protease-activated receptor-2 and TRPA1 was evident. CONCLUSIONS These findings demonstrate a previously unrecognized role for TRPA1 in normal and inflamed mechanosensory function and nociception within the viscera.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Kelvin Y. Kwan; James C. Wang
Targeted gene disruption in the murine TOP3β gene-encoding DNA topoisomerase IIIβ was carried out. In contrast to the embryonic lethality of mutant mice lacking DNA topoisomerase IIIα, top3β−/− nulls are viable and grow to maturity with no apparent defects. Mice lacking DNA topoisomerase IIIβ have a shorter life expectancy than their wild-type littermates, however. The mean lifespan of the top3β−/− mice is about 15 months, whereas that of their wild-type littermates is longer than 2 years. Mortality of the top3β−/− nulls appears to correlate with lesions in multiple organs, including hypertrophy of the spleen and submandibular lymph nodes, glomerulonephritis, and perivascular infiltrates in various organs. Because the DNA topoisomerase III isozymes are likely to interact with helicases of the RecQ family, enzymes that include the determinants of human Bloom, Werner, and Rothmund–Thomson syndromes, the shortened lifespan of top3β−/− mice points to the possibility that the DNA topoisomerase III isozymes might be involved in the pathogenesis of progeroid syndromes caused by defective RecQ helicases.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Kelvin Y. Kwan; Peter B. Moens; James C. Wang
We report that disruption of the mouse TOP3β gene encoding DNA topoisomerase IIIβ, one of the two mammalian type IA DNA topoisomerases, leads to a progressive reduction in fecundity. The litter size in crosses of top3β−/− mice decreases over time and through successive generations, and this decrease seems to reflect embryonic death rather than impaired fertilization. These observations are suggestive of a gradual accumulation of chromosomal defects in germ cells lacking DNA topoisomerase IIIβ, and this interpretation is supported by the observation of a high incidence of aneuploidy in the spermatocytes of infertile top3β−/− males. Cytogenetic examination of spermatocytes of wild-type mice also indicates that DNA topoisomerase IIIβ becomes prominently associated with the asynaptic regions of the XY bivalents during pachytene, and that there is a time lag between the appearance of chromosome-bound DNA topoisomerase IIIβ and Rad51, a protein known to be involved in an early step of homologous recombination. We interpret these findings, together with the known mechanistic characteristics of different subfamilies of DNA topoisomerases, in terms of a specific role of a type IA DNA topoisomerase in the resolution of meiotic double-Holliday junctions without crossing over. This interpretation is most likely applicable to mitotic cells as well and can explain the universal presence of at least one type IA DNA topoisomerase in all organisms.
The Journal of General Physiology | 2009
Kelvin Y. Kwan; David P. Corey
Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ∼15°C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1;
Database | 2015
Jun Shen; Déborah I. Scheffer; Kelvin Y. Kwan; David P. Corey
The inner ear is a highly specialized mechanosensitive organ responsible for hearing and balance. Its small size and difficulty in harvesting sufficient tissue has hindered the progress of molecular studies. The protein components of mechanotransduction, the molecular biology of inner ear development and the genetic causes of many hereditary hearing and balance disorders remain largely unknown. Inner-ear gene expression data will help illuminate each of these areas. For over a decade, our laboratories and others have generated extensive sets of gene expression data for different cell types in the inner ear using various sample preparation methods and high-throughput genome-wide approaches. To facilitate the study of genes in the inner ear by efficient presentation of the accumulated data and to foster collaboration among investigators, we have developed the Shared Harvard Inner Ear Laboratory Database (SHIELD), an integrated resource that seeks to compile, organize and analyse the genomic, transcriptomic and proteomic knowledge of the inner ear. Five datasets are currently available. These datasets are combined in a relational database that integrates experimental data and annotations relevant to the inner ear. The SHIELD has a searchable web interface with two data retrieval options: viewing the gene pages online or downloading individual datasets as data tables. Each retrieved gene page shows the gene expression data and detailed gene information with hyperlinks to other online databases with up-to-date annotations. Downloadable data tables, for more convenient offline data analysis, are derived from publications and are current as of the time of publication. The SHIELD has made published and some unpublished data freely available to the public with the hope and expectation of accelerating discovery in the molecular biology of balance, hearing and deafness. Database URL: https://shield.hms.harvard.edu