Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelvin Yuen-Kwong Chan is active.

Publication


Featured researches published by Kelvin Yuen-Kwong Chan.


PLOS Genetics | 2012

Genome-Wide Association Study in East Asians Identifies Novel Susceptibility Loci for Breast Cancer

Jirong Long; Qiuyin Cai; Hyuna Sung; Jiajun Shi; Ben Zhang; Ji Yeob Choi; Wanqing Wen; Ryan J. Delahanty; Wei Lu; Yu-Tang Gao; Hongbing Shen; Sue K. Park; Kexin Chen; Chen Yang Shen; Zefang Ren; Christopher A. Haiman; Keitaro Matsuo; Mi Kyung Kim; Us Khoo; Motoki Iwasaki; Ying Zheng; Yong Bing Xiang; Kai Gu; Nathaniel Rothman; Wenjing Wang; Zhibin Hu; Yao Liu; Keun-Young Yoo; Dong Young Noh; Bok Ghee Han

Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS) in 19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing 690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls. Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in up to 17,423 additional subjects (7,489 cases and 9,934 controls). SNP rs9485372, near the TGF-β activated kinase (TAB2) gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of 3.8×10−12 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals) were 0.89 (0.85–0.94) and 0.80 (0.75–0.86) for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951 (P = 1.9×10−6 from the combined analysis of all samples), located in intron 5 of the ESR1 gene, and SNP rs7107217 (P = 4.6×10−7), located at 11q24.3, also showed a consistent association in each of the four stages. This study provides strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1), and identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively.


Nature Genetics | 2006

Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection

Vera Sau-Fong Chan; Kelvin Yuen-Kwong Chan; Yongxiong Chen; Leo L.M. Poon; Annie N.Y. Cheung; Bo-Jian Zheng; Kwok-Hung Chan; William Mak; Hys Ngan; Xiao-Ning Xu; Gavin R. Screaton; Paul Kwong Hang Tam; Jonathan M. Austyn; Li-Chong Chan; Shea Ping Yip; Malik Peiris; Us Khoo; Chen-Lung S Lin

Severe acute respiratory syndrome (SARS) is caused by infection of a previously undescribed coronavirus (CoV). L-SIGN, encoded by CLEC4M (also known as CD209L), is a SARS-CoV binding receptor that has polymorphism in its extracellular neck region encoded by the tandem repeat domain in exon 4. Our genetic risk association study shows that individuals homozygous for CLEC4M tandem repeats are less susceptible to SARS infection. L-SIGN is expressed in both non-SARS and SARS-CoV–infected lung. Compared with cells heterozygous for L-SIGN, cells homozygous for L-SIGN show higher binding capacity for SARS-CoV, higher proteasome-dependent viral degradation and a lower capacity for trans infection. Thus, homozygosity for L-SIGN plays a protective role during SARS infection.


Human Molecular Genetics | 2011

Genome-wide association study identifies breast cancer risk variant at 10q21.2: results from the Asia Breast Cancer Consortium

Qiuyin Cai; Jirong Long; Wei Lu; Shimian Qu; Wanqing Wen; Daehee Kang; Ji Young Lee; Kexin Chen; Hongbing Shen; Chen-Yang Shen; Hyuna Sung; Keitaro Matsuo; Christopher A. Haiman; Us Khoo; Zefang Ren; Motoki Iwasaki; Kai Gu; Yong Bing Xiang; Ji Yeob Choi; Sue K. Park; Lina Zhang; Zhibin Hu; Pei Ei Wu; Dong Young Noh; Kazuo Tajima; Brian E. Henderson; Kelvin Yuen-Kwong Chan; Fengxi Su; Yoshio Kasuga; Wenjing Wang

Although approximately 20 common genetic susceptibility loci have been identified for breast cancer risk through genome-wide association studies (GWASs), genetic risk variants reported to date explain only a small fraction of heritability for this common cancer. We conducted a four-stage GWAS including 17 153 cases and 16 943 controls among East-Asian women to search for new genetic risk factors for breast cancer. After analyzing 684 457 SNPs in 2062 cases and 2066 controls (Stage I), we selected for replication among 5969 Chinese women (4146 cases and 1823 controls) the top 49 SNPs that had neither been reported previously nor were in strong linkage disequilibrium with reported SNPs (Stage II). Three SNPs were further evaluated in up to 13 152 Chinese and Japanese women (6436 cases and 6716 controls) (Stage III). Finally, two SNPs were evaluated in 10 847 Korean women (4509 cases and 6338 controls) (Stage IV). SNP rs10822013 on chromosome 10q21.2, located in the zinc finger protein 365 (ZNF365) gene, showed a consistent association with breast cancer risk in all four stages with a combined per-risk allele odds ratio of 1.10 (95% CI: 1.07-1.14) (P-value for trend = 5.87 × 10(-9)). In vitro electrophoretic mobility shift assays demonstrated the potential functional significance of rs10822013. Our results strongly implicate rs10822013 at 10q21.2 as a genetic risk variant for breast cancer among East-Asian women.


Oncogene | 2012

FOXO3a represses VEGF expression through FOXM1-dependent and -independent mechanisms in breast cancer

Christina T. Karadedou; Ana R. Gomes; Jie Chen; Maja Petkovic; Ka-Kei Ho; Aleksandra K. Zwolinska; Anne Feltes; San Yu Wong; Kelvin Yuen-Kwong Chan; Yuen-Nei Cheung; Janice W.-H. Tsang; Jan J. Brosens; Us Khoo; Eric Lam

Vascular endothelial growth factor (VEGF) has a central role in breast cancer development and progression, but the mechanisms that control its expression are poorly understood. Breast cancer tissue microarrays revealed an inverse correlation between the Forkhead transcription factor Forkhead box class O (FOXO)3a and VEGF expression. Using the lapatinib-sensitive breast cancer cell lines BT474 and SKBR3 as model systems, we tested the possibility that VEGF expression is negatively regulated by FOXO3a. Lapatinib treatment of BT474 or SKBR3 cells resulted in nuclear translocation and activation of FOXO3a, followed by a reduction in VEGF expression. Transient transfection and inducible expression experiments showed that FOXO3a represses the proximal VEGF promoter, whereas another Forkhead member, FOXM1, induces VEGF expression. Chromatin immunoprecipitation and oligonucleotide pull-down assays showed that both FOXO3a and FOXM1 bind a consensus Forkhead response element (FHRE) in the VEGF promoter. Upon lapatinib stimulation, activated FOXO3a displaces FOXM1 bound to the FHRE before recruiting histone deacetylase 2 (HDAC2) to the promoter, leading to decreased histones H3 and H4 acetylation, and concomitant transcriptional inhibition of VEGF. These results show that FOXO3a-dependent repression of target genes in breast cancer cells, such as VEGF, involves competitive displacement of DNA-bound FOXM1 and active recruitment of transcriptional repressor complexes.


Nature Genetics | 2014

Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1

Qiuyin Cai; Ben Zhang; Hyuna Sung; Siew-Kee Low; Sun-Seog Kweon; Wei Lu; Jiajun Shi; Jirong Long; Wanqing Wen; Ji-Yeob Choi; Dong-Young Noh; Chen-Yang Shen; Keitaro Matsuo; Soo-Hwang Teo; Mi Kyung Kim; Us Khoo; Motoki Iwasaki; Mikael Hartman; Atsushi Takahashi; Kyota Ashikawa; Koichi Matsuda; Min-Ho Shin; Min Ho Park; Ying Zheng; Yong-Bing Xiang; Bu-Tian Ji; Sue K. Park; Pei-Ei Wu; Chia-Ni Hsiung; Hidemi Ito

In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified 3 genetic loci newly associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene; P = 8.82 × 10−9), rs10474352 at 5q14.3 (near the ARRDC3 gene; P = 1.67 × 10−9) and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene; P = 4.25 × 10−8). We replicated these associations in 16,003 cases and 41,335 controls of European ancestry (P = 0.030, 0.004 and 0.010, respectively). Data from the ENCODE Project suggest that variants rs4951011 and rs10474352 might be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer.


Clinical Cancer Research | 2013

Potentially Prognostic miRNAs in HPV-Associated Oropharyngeal Carcinoma

Angela B.Y. Hui; Alice Lin; Wei Xu; Levi Waldron; Bayardo Perez-Ordonez; Ilan Weinreb; Wei Shi; Jeff Bruce; Shao Hui Huang; Brian O'Sullivan; John Waldron; Patrick J. Gullane; Jonathan C. Irish; Kelvin Yuen-Kwong Chan; Fei-Fei Liu

Purpose: Deregulation of miRNAs is associated with almost all human malignancies. Human papillomavirus (HPV)-associated oropharyngeal carcinoma (OPC) has a significantly more favorable outcome compared with HPV-negative OPCs; however, the underlying mechanisms are not well understood. Hence, the objectives of this study were to determine whether miRNA expression differed as a function of HPV status and to assess whether such miRNAs provide prognostic value beyond HPV status. Methods: Global miRNA profilings were conducted on 88 formalin-fixed and paraffin-embedded (FFPE) OPC biopsies (p16-positive: 56; p16-negative: 32), wherein the expression levels of 365 miRNAs plus 3 endogenous controls were simultaneously measured using quantitative real-time (qRT)-PCR. Seven FFPE specimens of histologically normal tonsils were used as controls. Results: Overall, 224 miRNAs were expressed in more than 80% of the investigated samples, with 128 (57%) being significantly differentially expressed between tumor versus normal tissues (P < 0.05). Upregulated miR-20b, miR-9, and miR-9* were significantly associated with HPV/p16-status. Three miRNA sets were significantly associated with overall survival (miR-107, miR-151, miR-492; P = 0.0002), disease-free survival (miR-20b, miR-107, miR-151, miR-182, miR-361; P = 0.0001), and distant metastasis (miR-151, miR-152, miR-324-5p, miR-361, miR492; P = 0.0087), which retained significance even after adjusting for p16 status. The associated biologic functions of these miRNAs include immune surveillance, treatment resistance, invasion, and metastasis. Conclusion: We have identified several miRNAs, which associate with HPV status in OPC; furthermore, three candidate prognostic sets of miRNAs seem to correlate with clinical outcome, independent of p16 status. Furthermore, evaluations will offer biologic insights into the mechanisms underlying the differences between HPV-positive versus HPV-negative OPC. Clin Cancer Res; 19(8); 2154–62. ©2013 AACR.


Journal of Molecular Medicine | 2008

DC-SIGN and L-SIGN: the SIGNs for infection

Us Khoo; Kelvin Yuen-Kwong Chan; Vera Sau-Fong Chan; C. L.Steve Lin

Two closely related trans-membrane C-type lectins dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN or CD209) and liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN also known as DC-SIGNR, CD209L or CLEC4M) directly recognize a wide range of micro-organisms of major impact on public health. Both genes have long been considered to share similar overall structure and ligand-binding characteristics. This review presents more recent biochemical and structural studies, which show that they have distinct ligand-binding properties and different physiological functions. Of importance in both these genes is the presence of an extra-cellular domain consisting of an extended neck region encoded by tandem repeats that support the carbohydrate-recognition domain, which plays a crucial role in influencing the pathogen-binding properties of these receptors. The notable difference between these two genes is in this extra-cellular domain. Whilst the tandem-neck-repeat region remains relatively constant size for DC-SIGN, there is considerable polymorphism for L-SIGN. Homo-oligomerization of the neck region of L-SIGN has been shown to be important for high-affinity ligand binding, and heterozygous expression of the polymorphic variants of L-SIGN in which neck lengths differ could thus affect ligand-binding affinity. Functional studies on the effect of this tandem-neck-repeat region on pathogen-binding, as well as genetic association studies for various infectious diseases and among different populations, are discussed. Worldwide demographic data of the tandem-neck-repeat region showing distinct differences in the neck-region allele and genotype distribution among different ethnic groups are presented. These findings support the neck region as an excellent candidate acting as a functional target for selective pressures exerted by pathogens.


American Journal of Pathology | 2008

Overexpression of NANOG in gestational trophoblastic diseases: Effect on apoptosis, cell invasion, and clinical outcome

Michelle K.Y. Siu; Esther S.Y. Wong; Hoi Yan Chan; Hys Ngan; Kelvin Yuen-Kwong Chan; Annie N.Y. Cheung

Gestational trophoblastic disease includes choriocarcinoma, a frankly malignant tumor, and hydatidiform mole (HM), which often leads to the development of persistent gestational trophoblastic neoplasia and requires chemotherapy. NANOG is an important transcription factor that is crucial for maintaining embryonic stem cell self-renewal and pluripotency. We postulated that NANOG is involved in the pathogenesis of gestational trophoblastic disease. In this study, significantly higher NANOG mRNA and protein expression levels, by quantitative PCR and immunoblotting, respectively, were demonstrated in HMs, particularly those that developed persistent disease, when compared with normal placentas. In addition, significantly increased nuclear NANOG immunoreactivity was found by immunohistochemistry in HMs (P < 0.001) and choriocarcinoma (P = 0.002). Higher NANOG expression levels were demonstrated in HMs that developed persistent disease, as compared with those that regressed (P = 0.025). Nuclear localization of NANOG was confirmed by confocal microscopy and immunoblotting in choriocarcinoma cell lines. There was a significant inverse correlation between NANOG immunoreactivity and apoptotic index assessed by M30 CytoDeath antibody (P = 0.012). After stable knockdown of NANOG in the choriocarcinoma cell line JEG-3 by an shRNA approach, increased apoptosis was observed in relation to with enhanced caspases and poly(ADP-ribose) polymerase activities. NANOG knockdown was also associated with decreased mobility and invasion of JEG-3 and down-regulation of matrix metalloproteases 2 and 9. These findings suggest that NANOG is involved in the pathogenesis and clinical progress of gestational trophoblastic disease, likely through its effect on apoptosis, cell migration, and invasion.


Clinical Cancer Research | 2004

p73 expression is associated with the cellular radiosensitivity in cervical cancer after radiotherapy.

Stephanie S. Liu; Rebecca Ching-Yu Leung; Kelvin Yuen-Kwong Chan; Pui-Man Chiu; Annie N.Y. Cheung; Kar-Fai Tam; T.Y. Ng; Ling-Chui Wong; Hys Ngan

Apoptosis is one of the causes of cell death in cervical cancer following radiotherapy (S. S. Liu et al., Eur. J. Cancer, 37: 1104–1110, 2001). By studying the gene expression profile with cDNA apoptotic array, the p73 gene was found overexpressed in radiosensitive cervical cancers when compared with radioresistant ones. To investigate the role of the p73 gene in relation to clinical assessment of radiosensitivity in cervical cancer based on the findings of residual tumor cells in cervical biopsies after completion of radiotherapy, we studied the protein expression of p73 in 59 cervical cancers after radiotherapy and 68 normal cervices using immunohistochemistry. The expression of p73 was found to be significantly increased in cancer samples and, more importantly, in those samples sensitive to radiotherapy (P < 0.001). The overexpression of p73 actually predicted a better prognosis in cervical cancer patients (P < 0.001). To investigate the possible involvement of p73 downstream genes, the protein expressions of p21 and Bax were studied. The expression of p21, but not Bax, was found to be positively correlated with the expression of p73 (P = 0.001). Furthermore, the epigenetic regulation of p73 expression via DNA methylation was also investigated in 103 cervical cancers and 124 normals. Hypermethylation of p73 gene was observed in 38.8% of cervical cancers, and it was significantly associated with reduced or absent p73 expression (P < 0.001). Reactivation of p73 expression in two cervical cancer cell lines by demethylation treatment supported the role of methylation in the regulation of p73 expression. Our findings suggested that p73 expression was related to the radiosensitivity of cervical cancer cells and may play an important role in the regulation of cellular radiosensitivity.


International Journal of Cancer | 2008

Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis

Xiao-Yun Liao; Michelle K.Y. Siu; Kelvin Yuen-Kwong Chan; Esther S.Y. Wong; Hys Ngan; Queeny K.Y. Chan; Albert Siu-Ming Li; Us Khoo; Annie N.Y. Cheung

Epigenetic aberration is known to be important in human carcinogenesis. Promoter methylation status of RAS effector related genes, RASSF1A, RASSF2A, hDAB2IP (m2a and m2b regions) and BLU, was evaluated in 76 endometrial carcinomas and their non‐neoplastic endometrial tissue by methylation specific PCR. Hypermethylation of at least one of the 5 genes was detected in 73.7% of carcinomas. There were significant correlations between methylation of hDAB2IP and RASSF1A, RASSF2A (p = 0.042, p = 0.012, respectively). Significantly, more frequent RASSF1A hypermethylation was found in Type I endometrioid carcinomas than Type II carcinomas (p = 0.049). Among endometrioid cancers, significant association between RASSF1A hypermethylation and advanced stage, as well as between methylation of hDAB2IP at m2a region with deep myometrial invasion (p < 0.05) was observed. mRNA expression of RASSF1A, RASSF2A and BLU in endometrial cancer cell lines significantly increased after treatment with the demethylating agent 5‐Aza‐2′‐deoxycytidine supporting the repressive effect of hypermethylation on their transcription. Immunohistochemical study of DNMT1 on eight normal endometrium, 16 hyperplastic endometrium without atypia, 40 atypical complex hyperplasia and 79 endometrial carcinomas showed progressive increase in DNMT1 immunoreactivity from normal endometrium to endometrial hyperplasia and endometrioid carcinomas (p = 0.001). Among carcinomas, distinctly higher DNMT1 expression was observed in Type I endometrioid carcinomas (p < 0.001). DNMT1 immunoreactivity correlated with RASSF1A and RASSF2A methylation (p < 0.05). The data suggested that hypermethylation of RAS related genes, particularly RASSF1A, was involved in endometrial carcinogenesis with possible divergent patterns in different histological types. DNMT1 protein overexpression might contribute to such aberrant DNA hypermethylation of specific tumor suppressor genes in endometrial cancers.

Collaboration


Dive into the Kelvin Yuen-Kwong Chan's collaboration.

Top Co-Authors

Avatar

Us Khoo

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Hys Ngan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pui-Man Chiu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge