Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Caldeira is active.

Publication


Featured researches published by Ken Caldeira.


Science | 2007

Coral Reefs Under Rapid Climate Change and Ocean Acidification

Ove Hoegh-Guldberg; Peter J. Mumby; Anthony J. Hooten; Robert S. Steneck; P. F. Greenfield; Edgardo D. Gomez; C. D. Harvell; Peter F. Sale; Alasdair J. Edwards; Ken Caldeira; Nancy Knowlton; C. M. Eakin; Roberto Iglesias-Prieto; Nyawira A. Muthiga; Roger Bradbury; A. Dubi; Marea E. Hatziolos

Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Consumption-based accounting of CO2 emissions

Steven J. Davis; Ken Caldeira

CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with the consumption of goods and services in each country. Consumption-based accounting of CO2 emissions differs from traditional, production-based inventories because of imports and exports of goods and services that, either directly or indirectly, involve CO2 emissions. Here, using the latest available data, we present a global consumption-based CO2 emissions inventory and calculations of associated consumption-based energy and carbon intensities. We find that, in 2004, 23% of global CO2 emissions, or 6.2 gigatonnes CO2, were traded internationally, primarily as exports from China and other emerging markets to consumers in developed countries. In some wealthy countries, including Switzerland, Sweden, Austria, the United Kingdom, and France, >30% of consumption-based emissions were imported, with net imports to many Europeans of >4 tons CO2 per person in 2004. Net import of emissions to the United States in the same year was somewhat less: 10.8% of total consumption-based emissions and 2.4 tons CO2 per person. In contrast, 22.5% of the emissions produced in China in 2004 were exported, on net, to consumers elsewhere. Consumption-based accounting of CO2 emissions demonstrates the potential for international carbon leakage. Sharing responsibility for emissions among producers and consumers could facilitate international agreement on global climate policy that is now hindered by concerns over the regional and historical inequity of emissions.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Combined climate and carbon-cycle effects of large-scale deforestation

G. Bala; Ken Caldeira; M. Wickett; Thomas J. Phillips; David B. Lobell; Christine Delire; Arthur A. Mirin

The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earths climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earths climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.


Nature | 1998

Energy implications of future stabilization of atmospheric CO2 content

Martin I. Hoffert; Ken Caldeira; Atul K. Jain; Erik F. Haites; L. D. Danny Harvey; Seth Potter; Michael E. Schlesinger; Stephen H. Schneider; Robert G. Watts; Tom M. L. Wigley; Donald J. Wuebbles

The United Nations Framework Convention on Climate Change calls for “stabilization of greenhouse-gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system . . . ”. A standard baseline scenario, that assumes no policy intervention to limit greenhouse-gas emissions has 10 TW (10 × 1012 watts) of carbon-emission-free power being produced by the year 2050, equivalent to the power provided by all todays energy sources combined. Here we employ a carbon-cycle/energy model to estimate the carbon-emission-free power needed for various atmospheric CO2 stabilization scenarios. We find that CO2 stabilization with continued economic growth will require innovative, cost-effective and carbon-emission-free technologies that can provide additional tens of terawatts of primary power in the coming decades, and certainly by the middle of the twenty-first century, even with sustained improvement in the economic productivity of primary energy. At progressively lower atmospheric CO2-stabilization targets in the 750–350 p.p.m.v. range, implementing stabilization will become even more challenging because of the increasing demand for carbon-emission-free power. The magnitude of the implied infrastructure transition suggests the need for massive investments in innovative energy research.


Geophysical Research Letters | 2004

Evaluation of ocean carbon cycle models with data-based metrics

Katsumi Matsumoto; Jorge L. Sarmiento; Robert M. Key; Olivier Aumont; John L. Bullister; Ken Caldeira; J.-M. Campin; Scott C. Doney; Helge Drange; Jean-Claude Dutay; Michael J. Follows; Yongqi Gao; Anand Gnanadesikan; Nicolas Gruber; Akio Ishida; Fortunat Joos; Keith Lindsay; Ernst Maier-Reimer; John Marshall; Richard J. Matear; Patrick Monfray; Anne Mouchet; Raymond G. Najjar; Gian-Kasper Plattner; Reiner Schlitzer; Richard D. Slater; P. S. Swathi; Ian J. Totterdell; Marie-France Weirig; Yasuhiro Yamanaka

New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.


Environmental Research Letters | 2008

Protecting climate with forests

Robert B. Jackson; James T. Randerson; Josep G. Canadell; Ray G. Anderson; Roni Avissar; Dennis D. Baldocchi; Gordon B. Bonan; Ken Caldeira; Noah S. Diffenbaugh; Christopher B. Field; Bruce A. Hungate; Esteban G. Jobbágy; Lara M. Kueppers; Marcelo D. Nosetto; Diane E. Pataki

Policies for climate mitigation on land rarely acknowledge biophysical factors, such as reflectivity, evaporation, and surface roughness. Yet such factors can alter temperatures much more than carbon sequestration does, and often in a conflicting way. We outline a framework for examining biophysical factors in mitigation policies and provide some best-practice recommendations based on that framework. Tropical projects—avoided deforestation, forest restoration, and afforestation—provide the greatest climate value, because carbon storage and biophysics align to cool the Earth. In contrast, the climate benefits of carbon storage are often counteracted in boreal and other snow-covered regions, where darker trees trap more heat than snow does. Managers can increase the climate benefit of some forest projects by using more reflective and deciduous species and through urban forestry projects that reduce energy use. Ignoring biophysical interactions could result in millions of dollars being invested in some mitigation projects that provide little climate benefit or, worse, are counter-productive.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Transient climate-carbon simulations of planetary geoengineering

H. Damon Matthews; Ken Caldeira

Geoengineering (the intentional modification of Earths climate) has been proposed as a means of reducing CO2-induced climate warming while greenhouse gas emissions continue. Most proposals involve managing incoming solar radiation such that future greenhouse gas forcing is counteracted by reduced solar forcing. In this study, we assess the transient climate response to geoengineering under a business-as-usual CO2 emissions scenario by using an intermediate-complexity global climate model that includes an interactive carbon cycle. We find that the climate system responds quickly to artificially reduced insolation; hence, there may be little cost to delaying the deployment of geoengineering strategies until such a time as “dangerous” climate change is imminent. Spatial temperature patterns in the geoengineered simulation are comparable with preindustrial temperatures, although this is not true for precipitation. Carbon sinks in the model increase in response to geoengineering. Because geoengineering acts to mask climate warming, there is a direct CO2-driven increase in carbon uptake without an offsetting temperature-driven suppression of carbon sinks. However, this strengthening of carbon sinks, combined with the potential for rapid climate adjustment to changes in solar forcing, leads to serious consequences should geoengineering fail or be stopped abruptly. Such a scenario could lead to very rapid climate change, with warming rates up to 20 times greater than present-day rates. This warming rebound would be larger and more sustained should climate sensitivity prove to be higher than expected. Thus, employing geoengineering schemes with continued carbon emissions could lead to severe risks for the global climate system.


Ocean Modelling | 2002

Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models

Jean-Claude Dutay; John L. Bullister; Scott C. Doney; James C. Orr; Raymond G. Najjar; Ken Caldeira; J.-M. Campin; Helge Drange; Michael J. Follows; Yongqi Gao; Nicolas Gruber; Matthew W. Hecht; Akio Ishida; F. Joos; Keith Lindsay; Gurvan Madec; Ernst Maier-Reimer; John Marshall; Richard J. Matear; Patrick Monfray; Anne Mouchet; G.-K. Plattner; Jorge L. Sarmiento; Reiner Schlitzer; Richard D. Slater; Ian J. Totterdell; Marie-France Weirig; Yasuhiro Yamanaka; Andrew Yool

We compared the 13 models participating in the Ocean Carbon Model Intercomparison Project (OCMIP) with regards to their skill in matching observed distributions of CFC-11. This analysis characterizes the abilities of these models to ventilate the ocean on timescales relevant for anthropogenic CO2 uptake. We found a large range in the modeled global inventory (±30%), mainly due to differences in ventilation from the high latitudes. In the Southern Ocean, models differ particularly in the longitudinal distribution of the CFC uptake in the intermediate water, whereas the latitudinal distribution is mainly controlled by the subgrid-scale parameterization. Models with isopycnal diffusion and eddy-induced velocity parameterization produce more realistic intermediate water ventilation. Deep and bottom water ventilation also varies substantially between the models. Models coupled to a sea-ice model systematically provide more realistic AABW formation source region; however these same models also largely overestimate AABW ventilation if no specific parameterization of brine rejection during sea-ice formation is included. In the North Pacific Ocean, all models exhibit a systematic large underestimation of the CFC uptake in the thermocline of the subtropical gyre, while no systematic difference toward the observations is found in the subpolar gyre. In the North Atlantic Ocean, the CFC uptake is globally underestimated in subsurface. In the deep ocean, all but the adjoint model, failed to produce the two recently ventilated branches observed in the North Atlantic Deep Water (NADW). Furthermore, simulated transport in the Deep Western Boundary Current (DWBC) is too sluggish in all but the isopycnal model, where it is too rapid.


Geophysical Research Letters | 2008

Historical trends in the jet streams

Cristina L. Archer; Ken Caldeira

[1] Jet streams, the meandering bands of fast winds located near the tropopause, are driving factors for weather in the midlatitudes. This is the first study to analyze historical trends of jet stream properties based on the ERA-40 and the NCEP/NCAR reanalysis datasets for the period 1979 to 2001. We defined jet stream properties based on mass and mass-flux weighted averages. We found that, in general, the jet streams have risen in altitude and moved poleward in both hemispheres. In the northern hemisphere, the jet stream weakened. In the southern hemisphere, the sub-tropical jet weakened, whereas the polar jet strengthened. Exceptions to this general behavior were found locally and seasonally. Further observations and analysis are needed to confidently attribute the causes of these changes to anthropogenic climate change, natural variability, or some combination of the two. Citation: Archer, C. L., and K. Caldeira (2008), Historical trends in the jet streams, Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The supply chain of CO2 emissions

Steven J. Davis; Glen P. Peters; Ken Caldeira

CO2 emissions from the burning of fossil fuels are conventionally attributed to the country where the emissions are produced (i.e., where the fuels are burned). However, these production-based accounts represent a single point in the value chain of fossil fuels, which may have been extracted elsewhere and may be used to provide goods or services to consumers elsewhere. We present a consistent set of carbon inventories that spans the full supply chain of global CO2 emissions, finding that 10.2 billion tons CO2 or 37% of global emissions are from fossil fuels traded internationally and an additional 6.4 billion tons CO2 or 23% of global emissions are embodied in traded goods. Our results reveal vulnerabilities and benefits related to current patterns of energy use that are relevant to climate and energy policy. In particular, if a consistent and unavoidable price were imposed on CO2 emissions somewhere along the supply chain, then all of the parties along the supply chain would seek to impose that price to generate revenue from taxes collected or permits sold. The geographical concentration of carbon-based fuels and relatively small number of parties involved in extracting and refining those fuels suggest that regulation at the wellhead, mine mouth, or refinery might minimize transaction costs as well as opportunities for leakage.

Collaboration


Dive into the Ken Caldeira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roderick A. Hyde

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Govindasamy Bala

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michael Everett Wickett

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Muriel Y. Ishikawa

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge