Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken D. O’Halloran is active.

Publication


Featured researches published by Ken D. O’Halloran.


Psychoneuroendocrinology | 2015

Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood

Anna V. Golubeva; Sean J. Crampton; Lieve Desbonnet; Deirdre Edge; Orla O'Sullivan; Kevin W. Lomasney; Alexander V. Zhdanov; Fiona Crispie; Rachel D. Moloney; Yuliya E. Borre; Paul D. Cotter; Niall P. Hyland; Ken D. O’Halloran; Timothy G. Dinan; Gerard W. O’Keeffe; John F. Cryan

Early-life adverse experiences, including prenatal stress (PNS), are associated with a higher prevalence of neurodevelopmental, cardiovascular and metabolic disorders in affected offspring. Here, in a rat model of chronic PNS, we investigate the impact of late gestational stress on physiological outcomes in adulthood. Sprague-Dawley pregnant dams were subjected to repeated restraint stress from embryonic day 14 to day 20, and their male offspring were assessed at 4 months of age. PNS induced an exaggeration of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, as well as an elevation of blood pressure and impairment of cognitive function. Altered respiratory control was also observed, as demonstrated by increased variability in basal respiratory frequency and abnormal frequency responses to both hypoxic and hypercapnic challenges. PNS also affected gastrointestinal neurodevelopment and function, as measured by a decrease in the innervation density of distal colon and an increase in the colonic secretory response to catecholaminergic stimulation. Finally, PNS induced long lasting alterations in the intestinal microbiota composition. 16S rRNA gene 454 pyrosequencing revealed a strong trend towards decreased numbers of bacteria in the Lactobacillus genus, accompanied by elevated abundance of the Oscillibacter, Anaerotruncus and Peptococcus genera in PNS animals. Strikingly, relative abundance of distinct bacteria genera significantly correlated with certain respiratory parameters and the responsiveness of the HPA axis to stress. Together, these findings provide novel evidence that PNS induces long-term maladaptive alterations in the gastrointestinal and respiratory systems, accompanied by hyper-responsiveness to stress and alterations in the gut microbiota.


Respiratory Physiology & Neurobiology | 2005

Does episodic hypoxia affect upper airway dilator muscle function? Implications for the pathophysiology of obstructive sleep apnoea.

Aidan Bradford; Michelle McGuire; Ken D. O’Halloran

Obstructive sleep apnoea (OSA) is characterised by repetitive collapse of the upper airway during sleep owing to a sleep-related decrement in upper airway muscle activity with consequent failure of the pharyngeal dilator muscles to oppose the collapsing pressure that is generated by the diaphragm and accessory muscles during inspiration. The causes of upper airway obstruction during sleep are multi-factorial but there is evidence implicating intrinsic upper airway muscle function and impaired central regulation of the upper airway muscles in the pathophysiology of OSA. The condition is associated with episodic hypoxia due to recurrent apnoea. However, despite its obvious importance very little is known about the effects of episodic hypoxia on upper airway muscle function. In this review, we examine the evidence that chronic intermittent hypoxia can affect upper airway muscle structure and function and impair CNS control of the pharyngeal dilator muscles. We review the literature and discuss results from our laboratory showing that episodic hypoxia/asphyxia reduces upper airway muscle endurance and selectively impairs pharyngeal dilator EMG responses to physiological stimulation. Our observations lead us to speculate that episodic hypoxia--a consequence of periodic airway occlusion--is responsible for progression of OSA through impairment of the neural control systems that regulate upper airway patency and through altered respiratory muscle contractile function, leading to the establishment of a vicious cycle of further airway obstruction and hypoxic insult that chronically exacerbates and perpetuates the condition. We conclude that chronic intermittent hypoxia/asphyxia contributes to the pathophysiology of sleep-disordered breathing.


Respiratory Physiology & Neurobiology | 2006

Effects of nicotine on rat sternohyoid muscle contractile properties

Ken D. O’Halloran

Obstructive sleep apnoea (OSA) is a major clinical disorder characterised by recurring episodes of pharyngeal collapse during sleep. At present, there remains no satisfactory treatment for OSA. Pharmacological therapies as a potential treatment for the disorder are an attractive option and include agents that increase the contractility of the pharyngeal muscles. The aim of the present study was to examine the effects of nicotine on upper airway muscle contractile properties. In vitro isometric contractile properties were determined using strips of rat sternohyoid muscle in physiological salt solution containing nicotine (0-100 microg/ml) at 25 degrees C. Isometric twitch and tetanic tension, contraction time, half-relaxation time and tension-frequency relationship were determined by electrical field stimulation with platinum electrodes. Fatigue was induced by stimulation at 40 Hz with 300 ms trains at a frequency of 0.5 Hz for 5 min. Nicotine at a concentration of 1 microg/ml was associated with a significant increase in sternohyoid muscle specific tension compared to control data. Dose-dependent increases in contractile tension were not observed. Nicotine had effects on tension-frequency relationship and endurance properties of the sternohyoid muscle at some but not all doses. A leftward shift in the tension-frequency relationship was observed at low stimulus frequencies (20-30 Hz) for nicotine at a concentration of 1 and 5 microg/ml and a significant increase in fatigue resistance was observed with nicotine at a concentration of 10 microg/ml. As fatigue of the upper airway muscles has been implicated in obstructive airway conditions, a pharmacological agent that improves muscle endurance may prove useful as a potential treatment for such disorders. Therefore, further studies of the effects of nicotinic agonists on upper airway function are warranted.


Journal of Anatomy | 2010

Comparison of the contractile properties, oxidative capacities and fibre type profiles of the voluntary sphincters of continence in the rat

Maria Buffini; Ken D. O’Halloran; Colm O’Herlihy; Ronan O’Connell; James F. X. Jones

The external urethral sphincter (EUS) and external anal sphincter (EAS) are the principal voluntary striated muscles that sustain continence of urine and faeces. In light of their common embryological origin, shared tonic sphincteric action and synchronized electrical activity in vivo, it was expected that they would exhibit similar physiological and structural properties. However, the findings of this study using paired observations of both sphincters isolated from the rat show clearly that this is not the case. The anal sphincter is much more fatigable than the urethral sphincter. On completion of a fatigue protocol, the amplitude of the last twitch of the EAS had declined to 42 ± 3% of the first twitch, whereas the last twitch of the EUS was almost identical to that of the first (95 ± 3%). Immunocytochemical detection of myosin heavy‐chain isoforms showed that this difference was not due to the presence of more slow‐twitch oxidative type 1 fibres in the EUS compared with the EAS (areal densities 4 ± 1% and 5 ± 1%, respectively; P = 0.35). In addition, the fatigue difference was not explained by a greater contribution to force production by fast oxidative type 2A fibres in the urethral sphincter. In fact, the anal sphincter contained a higher areal density of type 2A fibres (56 ± 5% vs. 37 ± 4% in the EUS, P = 0.017). The higher oxidative capacity of the EUS, measured histochemically, explained its fatigue resistance. These results were surprising because the fatigue‐resistant urethral muscle exhibited faster single‐twitch contraction times compared with the anal sphincter (56 ± 0.87 ms vs. 72.5 ± 1.16 ms, P < 0.001). Neither sphincter expressed the type 2X myosin isoform but the fast‐twitch isoform type 2B was found exclusively in the EUS (areal density 16 ± 2%). The type 2B fibres of the EUS were small (diameter 19.5 ± 0.4 μm) in comparison to typical type 2B fibres of other muscles. As a whole the EUS is a more oxidative than glycolytic muscle. In conclusion, analysis of the twitch mechanics and fatigue of two sphincters showed that the EUS contained more fatigue‐resistant muscle fibres compared with the EAS.


Journal of Histochemistry and Cytochemistry | 2013

Diaphragm Muscle Remodeling in a Rat Model of Chronic Intermittent Hypoxia

Christine M. Shortt; Anne Fredsted; Aidan Bradford; Ken D. O’Halloran

Respiratory muscle remodeling occurs in human sleep apnea—a common respiratory disorder characterized by chronic intermittent hypoxia (CIH) due to recurrent apnea during sleep. We sought to determine if CIH causes remodeling in rat sternohyoid (upper airway dilator) and diaphragm muscles. Adult male Wistar rats were exposed to CIH (n=8), consisting of 90 sec of hypoxia (5% at the nadir; SaO2 ~80%)/90 sec of normoxia, 8 hr per day, for 7 consecutive days. Sham animals (n=8) were exposed to alternating air/air cycles in parallel. The effect of CIH on myosin heavy-chain (MHC) isoform (1, 2a, 2x, 2b) distribution, sarcoplasmic reticulum calcium ATPase (SERCA) isoform distribution, succinate dehydrogenase activity, glycerol phosphate dehydrogenase activity, and Na+/K+ ATPase pump content was determined. Sternohyoid muscle structure was unaffected by CIH treatment. CIH did not alter oxidative/glycolytic capacity or the Na+/K+-ATPase pump content of the diaphragm. CIH significantly increased the areal density of MHC 2b fibers in the rat diaphragm, and this was associated with a shift in SERCA proteins from SERCA2 to SERCA1. We conclude that CIH causes a slow-to-fast fiber transition in the rat diaphragm after just 7 days of treatment. Respiratory muscle functional remodeling may drive aberrant functional plasticity such as decreased muscle endurance, which is a feature of human sleep apnea.


Respiratory Physiology & Neurobiology | 2012

Respiratory control and sternohyoid muscle structure and function in aged male rats: Decreased susceptibility to chronic intermittent hypoxia

J. Richard Skelly; Deirdre Edge; Christine M. Shortt; James F. X. Jones; Aidan Bradford; Ken D. O’Halloran

Obstructive sleep apnoea syndrome (OSAS) is a common respiratory disorder characterized by chronic intermittent hypoxia (CIH). We have shown that CIH causes upper airway muscle dysfunction in the rat due to oxidative stress. Ageing is an independent risk factor for the development of OSAS perhaps due to respiratory muscle remodelling and increased susceptibility to hypoxia. We sought to examine the effects of CIH on breathing and pharyngeal dilator muscle structure and function in aged rats. Aged (18-20 months), male Wistar rats were exposed to alternating cycles of normoxia and hypoxia (90 s each; F(I)O(2)=5% O(2) at nadir) or sham treatment for 8h/day for 9 days. Following CIH exposure, breathing was assessed by whole-body plethysmography. In addition, sternohyoid muscle contractile and endurance properties were examined in vitro. Muscle fibre type and cross-sectional area, and the activity of key oxidative and glycolytic enzymes were determined. CIH had no effect on basal breathing or ventilatory responses to hypoxia or hypercapnia. CIH did not alter succinate dehydrogenase or glycerol phosphate dehydrogenase enzyme activities, myosin heavy chain fibre areal density or cross-sectional area. Sternohyoid muscle force and endurance were unaffected by CIH exposure. Since we have established that this CIH paradigm causes sternohyoid muscle weakness in adult male rats, we conclude that aged rats have decreased susceptibility to CIH-induced stress. We suggest that structural remodelling with improved hypoxic tolerance in upper airway muscles may partly compensate for impaired neural regulation of the upper airway and increased propensity for airway collapse in aged mammals.


Advances in Experimental Medicine and Biology | 2010

Intermittent Hypoxia Impairs Pharyngeal Dilator Muscle Function in Male But Not Female Rats

J. Richard Skelly; Aidan Bradford; Ken D. O’Halloran

Upper airway muscle dysfunction is implicated in obstructive sleep apnoea syndrome (OSAS), a common respiratory disorder associated with recurrent hypoxaemia. The prevalence of OSAS is higher in males than females. We tested the hypothesis that sex differences exist in the effects of intermittent hypoxia on upper airway muscle function. Adult Wistar rats were exposed to intermittent hypoxia (IH, 90 s air/90 s N(2); 5% O(2) at nadir) or sham treatment for 8 hours/day for 9 days. Following treatments, animals were killed humanely and isometric contractile properties of the sternohyoid (SH) muscle were examined at 35OC in vitro. Force-frequency relationship was determined at stimulus frequencies ranging 10-100 Hz. In male rats, SH peak force was decreased in IH-treated male rats [22.7 +/- 08. vs. 15.9 +/- 0.9 N/cm(2), sham (n = 8) vs. IH (n = 8), p < 0.001 ANOVA]. Conversely, in female rats, IH treatment had no effect on SH peak force [21.0 +/- 1.2 vs. 19.8 +/- 0.8 N/cm(2), sham (n = 8) vs. IH (n = 8), p > 0.05 ANOVA]. We conclude that IH-induced impairment of pharyngeal dilator muscle performance may contribute to OSAS.


Respiration | 2011

Structural and functional properties of an upper airway dilator muscle in aged obese male rats.

J. Richard Skelly; Ruth A. O’Connell; James F. X. Jones; Ken D. O’Halloran

Background: Age, obesity and male sex are risk factors for the development of obstructive sleep apnoea syndrome. Objective: We examined structural and functional properties of the sternohyoid muscle in young lean and aged obese male rats. We hypothesized that the aged muscle would be vulnerable to oxidative stress (hypoxia). Methods: Isometric contractile and endurance properties of the sternohyoid muscle were assessed in vitro with or without the superoxide scavenger Tempol (10 mM). Muscle fibre size and density were determined by myosin heavy chain immunofluorescence. Succinate dehydrogenase (SDH) and glycerol-3- phosphate dehydrogenase (GPDH) enzyme activities were determined. Results: Fibre hypertrophy, increased fast twitch (type 2X) fibre density, decreased SDH activity and increased GPDH activity, together with increased force and fatigue, were observed in aged obese muscles compared to young lean muscles. Tempol treatment increased strength and sensitivity to stimulation. Hypoxic depression of force was ameliorated by antioxidant treatment with equivalent effects in young lean and aged obese muscle. Conclusions: We conclude that the rat sternohyoid exhibits indefinite growth and is protected from oxidative stress as the animal ages.


Respiratory Physiology & Neurobiology | 2016

Evidence of hypoxic tolerance in weak upper airway muscle from young mdx mice

David P. Burns; Ken D. O’Halloran

Duchenne muscular dystrophy (DMD) is a genetic disease characterised by deficiency in the protein dystrophin. The respiratory system is weakened and patients suffer from sleep disordered breathing and hypoventilation culminating in periods of hypoxaemia. We examined the effects of an acute (6h) hypoxic stress on sternohyoid muscle function (representative pharyngeal dilator). 8 week old male, wild-type (WT; C57BL/10ScSnJ; n=18) and mdx (C57BL/10ScSn-Dmd(mdx)/J; n=16) mice were exposed to sustained hypoxia (FIO2=0.10) or normoxia. Muscle functional properties were examined ex vivo. Additional WT (n=5) and mdx (n=5) sternohyoid muscle was exposed to an anoxic challenge. Sternohyoid dysfunction was observed in mdx mice with significant reductions in force and power. Following exposure to the acute in vivo hypoxic stress, WT sternohyoid muscle showed evidence of functional impairment (reduced force, work and power). Conversely, mdx sternohyoid showed an apparent tolerance to the acute hypoxic stress. This tolerance was not maintained for mdx following a severe hypoxic stress. A dysfunctional upper airway muscle phenotype is present at 8 weeks of age in the mdx mouse, which may have implications for the control of airway patency in DMD. Hypoxic tolerance in mdx respiratory muscle is suggestive of adaptation to chronic hypoxia, which could be present due to respiratory morbidity. We speculate a role for hypoxia in mdx respiratory muscle morbidity.


Advances in Experimental Medicine and Biology | 2015

Respiratory Control in the mdx Mouse Model of Duchenne Muscular Dystrophy

David P. Burns; Deirdre Edge; Dervla O’Malley; Ken D. O’Halloran

Duchenne muscular dystrophy (DMD) is a genetic disease caused by defects in the dystrophin gene resulting in loss of the structural protein dystrophin. Patients have reduced diaphragm functional capacity due to progressive muscle weakness. Respiratory morbidity in DMD is further characterised by hypoxaemic periods due to hypoventilation. DMD patients die prematurely due to respiratory and cardiac failure. In this study, we examined respiratory function in young adult male mdx (dystrophin deficient) mice (C57BL/10ScSn-Dmd(mdx)/J; n = 10) and in wild-type controls (WT; C57BL/10ScSnJ; n = 11). Breathing was assessed in unrestrained, unanaesthetised animals by whole-body plethysmography. Ventilatory parameters were recorded during air breathing and during exposure to acute hypoxia (F(i)O(2) = 0.1, 20 min). Data for the two groups of animals were compared using Students t tests. During normoxic breathing, mdx mice had reduced breathing frequency (p = 0.011), tidal volume (p = 0.093) and minute ventilation (p = 0.033) compared to WT. Hypoxia increased minute ventilation in WT and mdx animals. Mdx mice had a significantly increased ventilatory response to hypoxia which manifest as an elevated % change from baseline for minute ventilation (p = 0.0015) compared to WT. We conclude that mdx mice have impaired normoxic ventilation suggestive of hypoventilation. Furthermore, mdx mice have an enhanced hypoxic ventilatory response compared to WT animals which we speculate may be secondary to chronic hypoxaemia. Our results indicate that a significant respiratory phenotype is evident as early as 8 weeks in the mdx mouse model of DMD.

Collaboration


Dive into the Ken D. O’Halloran's collaboration.

Top Co-Authors

Avatar

Aidan Bradford

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Deirdre Edge

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald E. Bisgard

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Lewis

University College Cork

View shared research outputs
Top Co-Authors

Avatar

Jay K. Herman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge