Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Gall is active.

Publication


Featured researches published by Ken Gall.


Applied and Environmental Microbiology | 2001

Molecular Studies on the Ecology of Listeria monocytogenes in the Smoked Fish Processing Industry

Dawn M. Norton; Meghan McCAMEY; Ken Gall; Janet M. Scarlett; Kathryn J. Boor; Martin Wiedmann

ABSTRACT We have applied molecular approaches, including PCR-based detection strategies and DNA fingerprinting methods, to study the ecology ofListeria monocytogenes in food processing environments. A total of 531 samples, including raw fish, fish during the cold-smoking process, finished product, and environmental samples, were collected from three smoked fish processing facilities during five visits to each facility. A total of 95 (17.9%) of the samples tested positive forL. monocytogenes using a commercial PCR system (BAX for Screening/Listeria monocytogenes), including 57 (27.7%) environmental samples (n = 206), 8 (7.8%) raw material samples (n = 102), 23 (18.1%) samples from fish in various stages of processing(n = 127), and 7 (7.3%) finished product samples (n= 96). L. monocytogenes was isolated from 85 samples (16.0%) using culture methods. Used in conjunction with a 48-h enrichment in Listeria Enrichment Broth, the PCR system had a sensitivity of 91.8% and a specificity of 96.2%. To track the origin and spread of L. monocytogenes, isolates were fingerprinted by automated ribotyping. Fifteen different ribotypes were identified among 85 isolates tested. Ribotyping data established possible contamination patterns, implicating raw materials and the processing environment as potential sources of finished product contamination. Analysis of the distribution of ribotypes revealed that each processing facility had a unique contamination pattern and that specific ribotypes persisted in the environments of two facilities over time (P ≤ 0.0006). We conclude that application of molecular approaches can provide critical information on the ecology of different L. monocytogenes strains in food processing environments. This information can be used to develop practical recommendations for improved control of this important food-borne pathogen in the food industry.


Journal of Food Protection | 2003

Listeria monocytogenes Contamination Patterns for the Smoked Fish Processing Environment and for Raw Fish

Adam D. Hoffman; Ken Gall; Dawn M. Norton; Martin Wiedmann

Reliable data on the sources of Listeria monocytogenes contamination in cold-smoked fish processing are crucial in designing effective intervention strategies. Environmental samples (n = 512) and raw fish samples (n = 315) from two smoked fish processing facilities were screened for L. monocytogenes, and all isolates were subtyped by automated ribotyping to examine the relationship between L. monocytogenes contamination from raw materials and that from environmental sites. Samples were collected over two 8-week periods in early spring and summer. The five types of raw fish tested included lake whitefish, sablefish, farm-raised Norwegian salmon, farm-raised Chilean salmon, and feral (wild-caught) salmon from the U.S. West Coast. One hundred fifteen environmental samples and 46 raw fish samples tested positive for L. monocytogenes. Prevalence values for environmental samples varied significantly (P < 0.0001) between the two plants; plant A had a prevalence value of 43.8% (112 of 256 samples), and plant B had a value of 1.2% (3 of 256 samples). For plant A, 62.5% of drain samples tested positive for L. monocytogenes, compared with 32.3% of samples collected from other environmental sites and 3.1% of samples collected from food contact surfaces. Ribotyping identified 11 subtypes present in the plant environments. Multiple subtypes, including four subtypes not found on any raw fish, were found to persist in plant A throughout the study. Contamination prevalence values for raw fish varied from 3.6% (sablefish) to 29.5% (U.S. West Coast salmon), with an average overall prevalence of 14.6%. Sixteen separate L. monocytogenes subtypes were present on raw fish, including nine that were not found in the plant environment. Our results indicate a disparity between the subtypes found on raw fish and those found in the processing environment. We thus conclude that environmental contamination is largely separate from that of incoming raw materials and includes strains persisting, possibly for years, within the plant. Operational and sanitation procedures appear to have a significant impact on environmental contamination, with both plants having similar prevalence values for raw materials but disparate contamination prevalence values for the environmental sites. We also conclude that regular L. monocyrogenes testing of drains, combined with molecular subtyping of the isolates obtained, allows for efficient monitoring of persistent L. monocytogenes contamination in a processing plant.


Journal of Food Protection | 2004

Tracking of Listeria monocytogenes in Smoked Fish Processing Plants

Joanne Thimothe; Kendra K. Nightingale; Ken Gall; Virginia N. Scott; Martin Wiedmann

Four smoked fish processing plants were used as a model system to characterize Listeria monocytogenes contamination patterns in ready-to-eat food production environments. Each of the four plants was sampled monthly for approximately 1 year. At each sampling, four to six raw fish and four to six finished product samples were collected from corresponding lots. In addition, 12 to 14 environmental sponge samples were collected several hours after the start of production at sites selected as being likely contamination sources. A total of 234 raw fish, 233 finished products, and 553 environmental samples were tested. Presumptive Listeria spp. were isolated from 16.7% of the raw fish samples, 9.0% of the finished product samples, and 27.3% of the environmental samples. L. monocytogenes was isolated from 3.8% of the raw fish samples (0 to 10%, depending on the plant), 1.3% of the finished product samples (0 to 3.3%), and 12.8% of the environmental samples (0 to 29.8%). Among the environmental samples, L. monocytogenes was found in 23.7% of the samples taken from drains, 4.8% of the samples taken from food contact surfaces, 10.4% of the samples taken from employee contact surfaces (aprons, hands, and door handles), and 12.3% of the samples taken from other nonfood contact surfaces. Listeria spp. were isolated from environmental samples in each of the four plants, whereas L. monocytogenes was not found in any of the environmental samples from one plant. Overall, the L. monocytogenes prevalence in the plant environment showed a statistically significant (P < 0.0001) positive relationship with the prevalence of this organism in finished product samples. Automated EcoRI ribotyping differentiated 15 ribotypes among the 83 L. monocytogenes isolates. For each of the three plants with L. monocytogenes-positive environmental samples, one or two ribotypes seemed to persist in the plant environment during the study period. In one plant, a specific L. monocytogenes ribotype represented 44% of the L. monocytogenes-positive environmental samples and was also responsible for one of the two finished product positives found in this plant. In another plant, a specific L. monocytogenes ribotype persisted in the raw fish handling area. However, this ribotype was never isolated from the finished product area in this plant, indicating that this operation has achieved effective separation of raw and finished product areas. Molecular subtyping methods can help identify plant-specific L. monocytogenes contamination routes and thus provide the knowledge needed to implement improved L. monocytogenes control strategies.


Journal of Food Protection | 2004

Longitudinal Studies on Listeria in Smoked Fish Plants: Impact of Intervention Strategies on Contamination Patterns

Victoria R. Lappi; Joanne Thimothe; Kendra K. Nightingale; Ken Gall; Virginia N. Scott; Martin Wiedmann

Four ready-to-eat smoked fish plants were monitored for 2 years to study Listeria contamination patterns and the impact of plant-specific Listeria control strategies, including employee training and targeted sanitation procedures, on Listeria contamination patterns. Samples from the processing plant environment and from raw and finished product were collected monthly and tested for Listeria spp. and Listeria monocytogenes. Before implementation of intervention strategies, 19.2% of raw product samples (n = 276), 8.7% of finished product samples (n = 275), and 26.1% of environmental samples (n = 617) tested positive for Listeria spp. During and after implementation of Listeria control strategies, 19.0% of raw product samples (n = 242), 7.0% of finished product samples (n = 244), and 19.5% of environmental samples (n = 527) were positive for Listeria spp. In one of the four fish plants (plant 4), no environmental samples were positive for L. monocytogenes, and this plant was thus excluded from statistical analyses. Based on data pooled from plants 1, 2, and 3, environmental Listeria spp. prevalence was significantly lower (P < 0.05) for nonfood contact surfaces and the finished product area and for the overall core environmental samples after implementation of control strategies. Listeria prevalence for floor drains was similar before and after implementation of controls (49.6 and 54.2%, respectively). Regression analysis revealed a significant positive relationship (P < 0.05) between L. monocytogenes prevalence in the environment and in finished products before implementation of control strategies; however, this relationship was absolved by implementation of Listeria control strategies. Molecular subtyping (EcoRI ribotyping) revealed that specific L. monocytogenes ribotypes persisted in three processing plants over time. These persistent ribotypes were responsible for all six finished product contamination events detected in plant 1. Ribotype data also indicated that incoming raw material is only rarely a direct source of finished product contamination. While these data indicate that plant-specific Listeria control strategies can reduce cross-contamination and prevalence of Listeria spp. and L. monocytogenes in the plant environment, elimination of persistent L. monocytogenes strains remains a considerable challenge.


Journal of Food Protection | 2002

Detection of Listeria in Crawfish Processing Plants and in Raw, Whole Crawfish and Processed Crawfish (Procambarus spp.)

Joanne Thimothe; Jonathan Walker; Voranuch Suvanich; Ken Gall; Michael W. Moody; Martin Wiedmann

The foodborne pathogen Listeria monocytogenes represents a major concern to the food industry and particularly to producers of ready-to-eat (RTE) foods because of the severity of human listeriosis infections and because of the ubiquitous nature of this organism. Although several studies on the prevalence and sources of L monocytogenes in various RTE seafoods have been conducted, limited information is available on the presence and potential sources of this organism in RTE crawfish products. We thus monitored the presence of L monocytogenes and other Listeria spp. in the processing environment, in raw, whole crawfish, and in cooked crawfish meat from two processing plants. Samples were collected from the two plants throughout one crawfish season (April to June 2001) at 5 and 8 separate visits, respectively. At each visit, 6 raw, whole crawfish, 6 finished product samples (crawfish meat), and 14 mid- or end-of-processing environmental sponge samples were collected and tested for L. monocytogenes and Listeria spp. Of the 337 samples tested, 31 contained Listeria spp. Although Listeria innocua was the predominant Listeria spp. found (20 samples), four samples were positive for L monocytogenes. L. monocytogenes was detected in three raw material samples and in one environmental sample. Listeria spp. were found in 29.5% of raw, whole crawfish (n = 78) and in 4.4% of environmental samples (n = 181) but in none of the finished product samples. Among the environmental samples, Listeria spp. were found in 15.4% of the drains (n = 39) and in 5.1% of the employee contact surfaces (gloves and aprons) (n = 39) but in none of the samples from food contact surfaces. Even though a high prevalence of Listeria spp. was detected on raw materials, it appears that the heat treatment during the processing of crawfish and the practices preventing postprocessing recontamination can significantly reduce Listeria contamination of RTE crawfish meat.


Journal of Food Protection | 2006

Daily Variability of Listeria Contamination Patterns in a Cold-Smoked Salmon Processing Operation

Yuewei Hu; Ken Gall; Alphina Ho; Renata Ivanek; Yrjö T. Gröhn; Martin Wiedmann

An understanding of Listeria transmission and contamination patterns in processing environments of ready-to-eat foods is critical for improving control of Listeria monocytogenes. A cold-smoked fish processing operation was the site used to study variability in Listeria contamination in a processing environment associated with a ready-to-eat food product throughout one production week (five consecutive days). Intensive testing was conducted on finished products and environmental samples collected at the beginning, middle, and end of each working day. A total of 20 finished products and 22 to 36 environmental samples were collected at each sampling time, and an additional 12 environmental samples were collected on days 4 and 5. Overall, a total of 782 samples, 300 finished products and 482 environmental samples, were tested. All samples were collected from processing steps after smoking, including skinning, trimming, slicing, staging, and packing. A total of 28 finished and 57 environmental samples (9.3 and 11.8%, respectively) were positive for Listeria spp. (including 1 and 5 samples positive for L. monocytogenes, respectively). DNA sequencing of the sigB gene allowed differentiation of eight Listeria subtypes. Listeria prevalence varied significantly between days, and a high prevalence in both environmental samples and finished products on day 3 was likely associated with a point source contamination event by a single Listeria welshimeri subtype. There were no consistent differences in Listeria prevalence among samples collected from the beginning, middle, and end of the production day, but subtype data often revealed unique contamination patterns for samples collected at different times of a given day. Listeria contamination patterns and prevalences were highly variable between days and within a given day. These findings indicate that chance events play an important role in the contamination of finished products, thus complicating efforts to define Listeria transmission patterns in processing environments associated with ready-to-eat foods.


Journal of Food Protection | 2004

Impact of intervention strategies on Listeria contamination patterns in crawfish processing plants: A longitudinal study

Victoria R. Lappi; Joanne Thimothe; Jonathan Walker; Jon Bell; Ken Gall; Michael W. Moody; Martin Wiedmann

Two ready-to-eat crawfish processing plants were monitored for 2 years to study the impact of Listeria control strategies, including employee training and targeted sanitation procedures, on Listeria contamination. Environmental, raw material, and finished product samples were collected weekly during the main processing months (April to June) and tested for Listeria spp. and Listeria monocytogenes. Before implementation of control strategies (year 1), the two processing plants showed Listeria spp. prevalences of 29.5% (n = 78) in raw, whole crawfish, 5.2% (n = 155) in the processing plant environment, and 0% (n = 78) in finished products. In year 2, after plant-specific Listeria control strategies were implemented, Listeria spp. prevalence increased in raw crawfish (57.5%, n = 101), in the processing plant environment (10.8%, n = 204), and in the finished product (1.0%, n = 102). Statistical analysis showed a significant increase in Listeria spp. prevalence (P < 0.0001) and a borderline nonsignificant increase in L. monocytogenes prevalence (P = 0.097) on raw material in year 2. Borderline nonsignificant increases were also observed for Listeria spp. prevalence in environmental samples (P = 0.082). Our data showed that Listeria spp. prevalence in raw crawfish can vary significantly among seasons. However, the increased contamination prevalence for raw materials only resulted in a limited Listeria prevalence increase for the processing plant environment with extremely low levels of finished product contamination. Heat treatment of raw materials combined with Listeria control strategies to prevent cross-contamination thus appears to be effective in achieving low levels of finished product contamination, even with Listeria spp. prevalences for raw crawfish of more than 50%.


Journal of Food Protection | 2004

Prevalence and Growth of Listeria on Naturally Contaminated Smoked Salmon over 28 Days of Storage at 4°C†

Victoria R. Lappi; Alphina Ho; Ken Gall; Martin Wiedmann

Only limited data are available on the growth characteristics of Listeria in naturally contaminated ready-to-eat foods. To evaluate Listeria contamination patterns and growth in smoked salmon, 72 smoked salmon product samples from two processing plants were tested for Listeria spp. and L. monocytogenes. Samples were divided into four approximately equal portions: one portion was tested on receipt, and the other three were vacuum sealed and stored at 4° C for 7, 14, and 28 days. Listeria testing was performed using both an enrichment procedure and direct plating to enumerate Listeria in samples that contained >2 to 10 CFU/g. Five samples were positive for Listeria spp., including one sample that was positive for L. monocytogenes. Most samples yielded only sporadic positive results among the portions tested on days 0, 7, 14, and 28. Only one sample contained Listeria spp. in numbers above the detection limit for enumeration. For this sample, the portions tested on days 7 and 28 contained 46 and 52 CFU/g, re...


Archive | 2004

Treatment Options to Elim- inate or Control Growth of Listeria monocytogenes on Raw Material and on Finished Product for the Smoked Fish Industry

Michael L. Jahncke; Robert Collette; Doris Hicks; Martin Wiedmann; Virginia N. Scott; Ken Gall


Food protection trends | 2005

Guidelines for Listeria testing of environmental, raw product and finished product samples in smoked seafood processing facilities

Virginia N. Scott; Martin Wiedmann; Doris Hicks; Robert Collette; Michael L. Jahncke; Ken Gall

Collaboration


Dive into the Ken Gall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Virginia N. Scott

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Bell

Louisiana State University Agricultural Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael W. Moody

Louisiana State University Agricultural Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge