Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Haga is active.

Publication


Featured researches published by Ken Haga.


The Plant Cell | 2005

The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin.

Ken Haga; Makoto Takano; Ralf Neumann; Moritoshi Iino

We isolated a mutant, named coleoptile phototropism1 (cpt1), from γ-ray–mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution.


Plant Physiology | 2004

Two Distinct Signaling Pathways Participate in Auxin-Induced Swelling of Pea Epidermal Protoplasts

Mutsumi Yamagami; Ken Haga; Richard M. Napier; Moritoshi Iino

Protoplast swelling was used to investigate auxin signaling in the growth-limiting stem epidermis. The protoplasts of epidermal cells were isolated from elongating internodes of pea (Pisum sativum). These protoplasts swelled in response to auxin, providing the clearest evidence that the epidermis can directly perceive auxin. The swelling response to the natural auxin IAA showed a biphasic dose response curve but that to the synthetic auxin 1-naphthalene acetic acid (NAA) showed a simple bell-shaped dose response curve. The responses to IAA and NAA were further analyzed using antibodies raised against ABP1 (auxin-binding protein 1), and their dependency on extracellular ions was investigated. Two signaling pathways were resolved for IAA, an ABP1-dependent pathway and an ABP1-independent pathway that is much more sensitive to IAA than the former. The response by the ABP1 pathway was eliminated by anti-ABP1 antibodies, had a higher sensitivity to NAA, and did not depend on extracellular Ca2+. In contrast, the response by the non-ABP1 pathway was not affected by anti-ABP1 antibodies, had no sensitivity to NAA, and depended on extracellular Ca2+. The swelling by either pathway required extracellular K+ and Cl–. The auxin-induced growth of pea internode segments showed similar response patterns, including the occurrence of two peaks in the dose response curve for IAA and the difference in Ca2+ requirements. It is suggested that two signaling pathways participate in auxin-induced internode growth and that the non-ABP1 pathway is more likely to be involved in the control of growth by constitutive concentrations of endogenous auxin.


Plant Physiology | 2012

PIN Auxin Efflux Carriers are Necessary for Pulse-Induced but not Continuous Light-Induced Phototropism in Arabidopsis

Ken Haga; Tatsuya Sakai

Auxin efflux carrier PIN-FORMED (PIN) proteins are thought to have central roles in regulating asymmetrical auxin translocation during tropic responses, including gravitropism and phototropism, in plants. Although PIN3 is known to be involved in phototropism in Arabidopsis (Arabidopsis thaliana), no severe defects of phototropism in any of the pin mutants have been reported. We show here that the pulse-induced, first positive phototropism is impaired partially in pin1, pin3, and pin7 single mutants, and severely in triple mutants. In contrast, such impairment was not observed in continuous-light-induced second positive phototropism. Analysis with an auxin-reporter gene demonstrated that PIN3-mediated auxin gradients participate in pulse-induced phototropism but not in continuous-light-induced phototropism. Similar functional separation was also applicable to PINOID, a regulator of PIN localization. Our results strongly suggest the existence of functionally distinct mechanisms i.e. a PIN-dependent mechanism in which transient stimulation is sufficient to induce phototropism, and a PIN-independent mechanism that requires continuous stimulation and does not operate in the former phototropism process. Although a previous study has proposed that blue-light photoreceptors, the phototropins, control PIN localization through the transcriptional down-regulation of PINOID, we could not detect this blue-light-dependent down-regulation event, suggesting that other as yet unknown mechanisms are involved in phototropin-mediated phototropic responses.


Plant and Cell Physiology | 2012

Molecular genetic analysis of phototropism in Arabidopsis

Tatsuya Sakai; Ken Haga

Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.


PLOS ONE | 2015

Full Establishment of Arbuscular Mycorrhizal Symbiosis in Rice Occurs Independently of Enzymatic Jasmonate Biosynthesis

Caroline Gutjahr; Heike Siegler; Ken Haga; Moritoshi Iino; Uta Paszkowski

Development of the mutualistic arbuscular mycorrhiza (AM) symbiosis between most land plants and fungi of the Glomeromycota is regulated by phytohormones. The role of jasmonate (JA) in AM colonization has been investigated in the dicotyledons Medicago truncatula, tomato and Nicotiana attenuata and contradicting results have been obtained with respect to a neutral, promotive or inhibitory effect of JA on AM colonization. Furthermore, it is currently unknown whether JA plays a role in AM colonization of monocotyledonous roots. Therefore we examined whether JA biosynthesis is required for AM colonization of the monocot rice. To this end we employed the rice mutant constitutive photomorphogenesis 2 (cpm2), which is deficient in JA biosynthesis. Through a time course experiment the amount and morphology of fungal colonization did not differ between wild-type and cpm2 roots. Furthermore, no significant difference in the expression of AM marker genes was detected between wild type and cpm2. However, treatment of wild-type roots with 50 μM JA lead to a decrease of AM colonization and this was correlated with induction of the defense gene PR4. These results indicate that JA is not required for AM colonization of rice but high levels of JA in the roots suppress AM development likely through the induction of defense.


Plant Journal | 2012

The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots.

Tatsuya Sakai; Susumu Mochizuki; Ken Haga; Yukiko Uehara; Akane Suzuki; Akiko Harada; Takuji Wada; Sumie Ishiguro; Kiyotaka Okada

Regulation of the root growth pattern is an important control mechanism during plant growth and propagation. To better understand alterations in root growth direction in response to environmental stimuli, we have characterized an Arabidopsis thaliana mutant, wavy growth 3 (wav3), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The wav3 mutant shows a greater curvature of root bending in response to gravity, but a smaller curvature in response to light, suggesting that it is a root gravitropism-enhancing mutation. This wav3 phenotype also suggests that enhancement of the gravitropic response in roots strengthens root tip impedance after contact with the agar surface and/or causes an increase in subsequent root bending in response to obstacle-touching stimulus in these mutants. WAV3 encodes a protein with a RING finger domain, and is mainly expressed in root tips. RING-containing proteins often function as an E3 ubiquitin ligase, and the WAV3 protein shows such activity in vitro. There are three genes homologous to WAV3 in the Arabidopsis genome [EMBRYO SAC DEVELOPMENT ARREST 40 (EDA40), WAVH1 and WAVH2 ], and wav3 wavh1 wavh2 triple mutants show marked root gravitropism abnormalities. This genetic study indicates that WAV3 functions positively rather than negatively in root gravitropism, and that enhancement of the gravitropic response in wav3 roots is dependent upon the function of WAVH2 in the absence of WAV3. Hence, our results demonstrate that the WAV3 family of proteins are E3 ligases that are required for root gravitropism in Arabidopsis.


Plant and Cell Physiology | 2014

The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling

Kazuhiko Yamamoto; Tomomi Suzuki; Yusuke Aihara; Ken Haga; Tatsuya Sakai; Akira Nagatani

Phototropism is caused by differential cell elongation between the irradiated and shaded sides of plant organs, such as the stem. It is widely accepted that an uneven auxin distribution between the two sides crucially participates in this response. Plant-specific blue-light photoreceptors, phototropins (phot1 and phot2), mediate this response. In grass coleoptiles, the sites of light perception and phototropic bending are spatially separated. However, these sites are less clearly distinguished in dicots. Furthermore, the exact placement of the action of each phototropic signaling factor remains unknown. Here, we investigated the spatial aspects of phototropism using spotlight irradiation with etiolated Arabidopsis seedlings. The results demonstrated that the topmost part of about 1.1 mm of the hypocotyl constituted the light-responsive region in which both light perception and actual bending occurred. In addition, cotyledons and the shoot apex were dispensable for the response. Hence, the response was more region autonomous in dicots than in monocots. We next examined the elongation rates, the levels of phot1 and the auxin-reporter gene expression along the hypocotyl during the phototropic response. The light-responsive region was more active than the non-responsive region with respect to all of those parameters.


Archive | 2005

Roles Played by Auxin in Phototropism and Photomorphogenesis

Moritoshi Iino; Ken Haga

Plants respond to light to undergo adaptive changes in their growth patterns.The idea that these responses are mediated by plant hormones has long been investigated. In fact, the first-identified plant hormone auxin was discovered and the original plant hormone concept was formulated through the studies of coleoptile phototropism, a light-induced growth movement. The role for auxin has since been a central subject of phototropism research. The elongation growth of seedling organs such as mesocotyls and hypocotyls is subject to marked lightinduced inhibition. Evidence has been provided that auxin and other plant hormones participate in these typical photomorphogenetic responses. This chapter reviews and discusses the mechanisms of phototropism and photomorphogenesis, focusing on the role played by the native auxin indole-3-acetic acid (IAA). Our understanding of the molecular mechanisms by which auxin mediates these physiological processes is far from complete, but recent molecular genetic studies have began to yield useful information.


Plant Signaling & Behavior | 2013

Differential roles of auxin efflux carrier PIN proteins in hypocotyl phototropism of etiolated Arabidopsis seedlings depend on the direction of light stimulus.

Ken Haga; Tatsuya Sakai

In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.


Plant Journal | 2013

Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae.

Michael Riemann; Ken Haga; Takafumi Shimizu; Kazunori Okada; Sugihiro Ando; Susumu Mochizuki; Yoko Nishizawa; Utako Yamanouchi; Peter Nick; Masahiro Yano; Eiichi Minami; Makoto Takano; Hisakazu Yamane; Moritoshi Iino

Collaboration


Dive into the Ken Haga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge