Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken-Ichi Oinuma is active.

Publication


Featured researches published by Ken-Ichi Oinuma.


Journal of Bacteriology | 2002

AmfS, an Extracellular Peptidic Morphogen in Streptomyces griseus

Kenji Ueda; Ken-Ichi Oinuma; Go Ikeda; Kuniaki Hosono; Yasuo Ohnishi; Sueharu Horinouchi; Teruhiko Beppu

The amf gene cluster was previously identified as a regulator for the onset of aerial-mycelium formation in Streptomyces griseus. The nucleotide sequences of amf and its counterparts in other species revealed a conserved gene organization consisting of five open reading frames. A nonsense mutation in amfS, encoding a 43-amino-acid peptide, caused significant blocking of aerial-mycelium formation and streptomycin production, suggesting its role as a regulatory molecule. Extracellular-complementation tests for the aerial-mycelium-deficient phenotype of the amfS mutant demonstrated that AmfS was secreted by the wild-type strain. A null mutation in amfBA, encoding HlyB-like membrane translocators, abolished the extracellular AmfS activity without affecting the wild-type morphology, which suggests that AmfBA is involved not in production but in export of AmfS. A synthetic C-terminal octapeptide partially induced aerial-mycelium formation in the amfS mutant, which suggests that an AmfS derivative, but not AmfS itself, serves as an extracellular morphogen.


Journal of Inorganic Biochemistry | 2002

Site-directed mutagenesis for cysteine residues of cobalt-containing nitrile hydratase.

Yoshiteru Hashimoto; Satoshi Sasaki; Sachio Herai; Ken-Ichi Oinuma; Sakayu Shimizu; Michihiko Kobayashi

Three cysteine residues, which are completely conserved among alpha-subunits in all nitrile hydratases, are thought to be the ligands of a metal ion in the catalytic center of this enzyme. These cysteine residues (i.e. alpha C102, alpha C105 and alpha C107) in the high-molecular-mass nitrile hydratase (H-NHase) of Rhodococcus rhodochrous J1 were replaced with alanine by site-directed mutagenesis using the R. rhodochrous ATCC12674 host-vector system, and the resultant transformants were investigated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for the cell-free extracts of each mutant transformant revealed that four mutant transformants (i.e. alpha C105A, alpha C107A, alpha C102A/C105A and alpha C105A/C107A) showed predominant alpha- and beta-subunit protein bands with a mobility identical to those of the native H-NHase, while three mutant transformants (i.e. alpha C102A, alpha C102A/C107A and alpha C102A/C105A/C107A) did not produce the corresponding proteins. The purified former four mutant enzymes showed neither enzymatic activity nor the maximum absorption at 410 nm which was detected in the wild type H-NHase. They also did not contain cobalt ions. Based upon these findings, these three cysteine residues were found to be essential for the active expression of H-NHase.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis

Junpei Nomura; Hiroshi Hashimoto; Takehiro Ohta; Yoshiteru Hashimoto; Koichi Wada; Yoshinori Naruta; Ken-Ichi Oinuma; Michihiko Kobayashi

Aldoxime dehydratase (OxdA), which is a unique heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. Unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes (e.g., P450), OxdA is notable for the direct binding of a substrate to the heme iron. Here, we determined the crystal structure of OxdA. We then constructed OxdA mutants in which each of the polar amino acids lying within ∼6 Å of the iron atom of the heme was converted to alanine. Among the purified mutant OxdAs, S219A had completely lost and R178A exhibited a reduction in the activity. Together with this finding, the crystal structural analysis of OxdA and spectroscopic and electrostatic potential analyses of the wild-type and mutant OxdAs suggest that S219 plays a key role in the catalysis, forming a hydrogen bond with the substrate. Based on the spatial arrangement of the OxdA active site and the results of a series of mutagenesis experiments, we propose the detailed catalytic mechanism of general aldoxime dehydratases: (i) S219 stabilizes the hydroxy group of the substrate to increase its basicity; (ii) H320 acts as an acid-base catalyst; and (iii) R178 stabilizes the heme, and would donate a proton to and accept one from H320.


FEBS Letters | 2004

Heme environment in aldoxime dehydratase involved in carbon–nitrogen triple bond synthesis

Ken-Ichi Oinuma; Takehiro Ohta; Kazunobu Konishi; Yoshiteru Hashimoto; Hiroki Higashibata; Teizo Kitagawa; Michihiko Kobayashi

Resonance Raman spectra have been measured to characterize the heme environment in aldoxime dehydratase (OxdA), a novel hemoprotein, which catalyzes the dehydration of aldoxime into nitrile. The spectra showed that the ferric heme in the enzyme is six‐coordinate low spin, whereas the ferrous heme is five‐coordinate high spin. We assign a prominent vibration that occurs at 226 cm−1 in the ferrous enzyme to the Fe‐proximal histidine stretching vibration. In the CO‐bound form of OxdA, the correlation between the Fe–CO stretching (512 cm−1) and C–O stretching (1950 cm−1) frequencies also supports our assignment of proximal histidine coordination.


Journal of Bacteriology | 2008

Transcriptional Regulation of the Nitrile Hydratase Gene Cluster in Pseudomonas chlororaphis B23

Toshihide Sakashita; Yoshiteru Hashimoto; Ken-Ichi Oinuma; Michihiko Kobayashi

An enormous amount of nitrile hydratase (NHase) is inducibly produced by Pseudomonas chlororaphis B23 after addition of methacrylamide as the sole nitrogen source to a medium. The expression pattern of the P. chlororaphis B23 NHase gene cluster in response to addition of methacrylamide to the medium was investigated. Recently, we reported that the NHase gene cluster comprises seven genes (oxdA, amiA, nhpA, nhpB, nhpC, nhpS, and acsA). Sequence analysis of the 1.5-kb region upstream of the oxdA gene revealed the presence of a 936-bp open reading frame (designated nhpR), which should encode a protein with a molecular mass of 35,098. The deduced amino acid sequence of the nhpR product showed similarity to the sequences of transcriptional regulators belonging to the XylS/AraC family. Although the transcription of the eight genes (nhpR, oxdA, amiA, nhpABC, nhpS, and acsA) in the NHase gene cluster was induced significantly in the P. chlororaphis B23 wild-type strain after addition of methacrylamide to the medium, transcription of these genes in the nhpR disruptant was not induced, demonstrating that nhpR codes for a positive transcriptional regulator in the NHase gene cluster. A reverse transcription-PCR experiment revealed that five genes (oxdA, amiA, nhpA, nhpB, and nhpC) are cotranscribed, as are two other genes (nhpS and acsA). The transcription start sites for nhpR, oxdA, nhpA, and nhpS were mapped by primer extension analysis, and putative -12 and -24 sigma(54)-type promoter binding sites were identified. NhpR was found to be the first transcriptional regulator of NHase belonging to the XylS/AraC family.


Bioresource Technology | 2015

Phenyllactic acid production by simultaneous saccharification and fermentation of pretreated sorghum bagasse

Hideo Kawaguchi; Hiroshi Teramura; Kouji Uematsu; Kiyotaka Y. Hara; Tomohisa Hasunuma; Ko Hirano; Takashi Sazuka; Hidemi Kitano; Yota Tsuge; Prihardi Kahar; Satoko Niimi-Nakamura; Ken-Ichi Oinuma; Naoki Takaya; Shigemitsu Kasuga; Chiaki Ogino; Akihiko Kondo

Dilute acid-pretreated sorghum bagasse, which was predominantly composed of glucan (59%) and xylose (7.2%), was used as a lignocellulosic feedstock for d-phenyllactic acid (PhLA) production by a recombinant Escherichia coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens. During fermentation with enzymatic hydrolysate of sorghum bagasse as a carbon source, the PhLA yield was reduced by 35% compared to filter paper hydrolysate, and metabolomics analysis revealed that NAD(P)H regeneration and intracellular levels of erythrose-4-phosphate and phosphoenolpyruvate for PhLA biosynthesis markedly reduced. Compared to separate hydrolysis and fermentation (SHF) with sorghum bagasse hydrolysate, simultaneous saccharification and fermentation (SSF) of sorghum bagasse under glucose limitation conditions yielded 4.8-fold more PhLA with less accumulation of eluted components, including p-coumaric acid and aldehydes, which inhibited PhLA fermentation. These results suggest that gradual enzymatic hydrolysis during SSF enhances PhLA production under glucose limitation and reduces the accumulation of fermentation inhibitors, collectively leading to increased PhLA yield.


FEBS Letters | 2005

Stopped‐flow spectrophotometric and resonance Raman analyses of aldoxime dehydratase involved in carbon–nitrogen triple bond synthesis

Ken-Ichi Oinuma; Hideyuki Kumita; Takehiro Ohta; Kazunobu Konishi; Yoshiteru Hashimoto; Hiroki Higashibata; Teizo Kitagawa; Yoshitsugu Shiro; Michihiko Kobayashi

On stopped‐flow analysis of aliphatic aldoxime dehydratase (OxdA), a novel hemoprotein, a spectrum derived from a reaction intermediate was detected on mixing ferrous OxdA with butyraldoxime; it gradually changed into that of ferrous OxdA with an isosbestic point at 421 nm. The spectral change on the addition of butyraldoxime to the ferrous H320A mutant showed the formation of a substrate‐coordinated mutant, the absorption spectrum of which closely resembled that of the above intermediate. These observations and the resonance Raman investigation revealed that the substrate actually binds to the heme in OxdA, forming a hexa‐coordinate low‐spin heme.


The Journal of Antibiotics | 2013

Divergent effects of desferrioxamine on bacterial growth and characteristics

Daisei Eto; Kenta Watanabe; Hisafumi Saeki; Ken-Ichi Oinuma; Ko-ichi Otani; Megumi Nobukuni; Hatsumi Shiratori-Takano; Hideaki Takano; Teruhiko Beppu; Kenji Ueda

Desferrioxamines (DF’s) are siderophores produced by some groups of bacteria. Previously, we discovered that DFE, produced by Streptomyces griseus, induced divergent developmental phenotypes in various Streptomyces isolates. In this study, we isolated bacteria whose phenotype was affected by the presence of 0.1 mM DFB from soil samples, and studied their phylogenetic position via 16 S rRNA gene-based analysis. Isolates belonging to Microbacterium grew only in the presence of DFB in the medium. DFB promoted growth of some isolates, while significantly inhibiting that of other divergent bacteria. Different groups of isolates were affected, not because of growth-related changes, but because of changes in the colony morphology based on possible stimulation of motility. An isolate affiliated with Janthinobacterium was stimulated for violacein production as well as for pilus formation. The wide and divergent effects of DFB suggest that availability of siderophores significantly affect the structure of microbial community.


Journal of Bacteriology | 2015

Hydrazidase, a Novel Amidase Signature Enzyme That Hydrolyzes Acylhydrazides

Ken-Ichi Oinuma; Atsushi Takuwa; Kosuke Taniyama; Yuki Doi; Naoki Takaya

The degradation mechanisms of natural and artificial hydrazides have been elucidated. Here we screened and isolated bacteria that utilize the acylhydrazide 4-hydroxybenzoic acid 1-phenylethylidene hydrazide (HBPH) from soils. Physiological and phylogenetic studies identified one bacterium as Microbacterium sp. strain HM58-2, from which we purified intracellular hydrazidase, cloned its gene, and prepared recombinant hydrazidase using an Escherichia coli expression system. The Microbacterium sp. HM58-2 hydrazidase is a 631-amino-acid monomer that was 31% identical to indoleacetamide hydrolase isolated from Bradyrhizobium japonicum. Phylogenetic studies indicated that the Microbacterium sp. HM58-2 hydrazidase constitutes a novel hydrazidase group among amidase signature proteins that are distributed within proteobacteria, actinobacteria, and firmicutes. The hydrazidase stoichiometrically hydrolyzed the acylhydrazide residue of HBPH to the corresponding acid and hydrazine derivative. Steady-state kinetics showed that the enzyme hydrolyzes structurally related 4-hydrozybenzamide to hydroxybenzoic acid at a lower rate than HBPH, indicating that the hydrazidase prefers hydrazide to amide. The hydrazidase contains the catalytic Ser-Ser-Lys motif that is conserved among members of the amidase signature family; it shares a catalytic mechanism with amidases, according to mutagenesis findings, and another hydrazidase-specific mechanism must exist that compensates for the absence of the catalytic Ser residue. The finding that an environmental bacterium produces hydrazidase implies the existence of a novel bacterial mechanism of hydrazide degradation that impacts its ecological role.


BMC Infectious Diseases | 2016

Two unusual cases of successful treatment of hypermucoviscous Klebsiella pneumoniae invasive syndrome

Hiroki Namikawa; Koichi Yamada; Hiroki Fujimoto; Ken-Ichi Oinuma; Yoshihiro Tochino; Yasuhiko Takemoto; Yukihiro Kaneko; Taichi Shuto; Hiroshi Kakeya

BackgroundA few Japanese cases of hypermucoviscous Klebsiella pneumoniae (K. pneumoniae) invasive syndrome have recently been reported. Although extrahepatic complications from bacteremic dissemination have been observed, infected aneurysms are rare. Furthermore, the primary source of infection is generally a liver abscess, and is rarely the prostate. Therefore, we report two atypical cases of hypermucoviscous K. pneumoniae invasive syndrome.Case presentationThe first case was an 81-year-old Japanese man with no significant medical history, who was referred to our hospital for vision loss in his right eye. Contrast-enhanced whole-body computed tomography revealed abscesses in the liver and the prostate, and an infected left internal iliac artery aneurysm. Contrast-enhanced head magnetic resonance imaging revealed brain abscesses. Cultures of the liver abscess specimen and aqueous humor revealed K. pneumoniae with the hypermucoviscosity phenotype, which carried the magA gene (mucoviscosity-associated gene A) and the rmpA gene (regulator of mucoid phenotype A). We performed enucleation of the right eyeball, percutaneous transhepatic drainage, coil embolization of the aneurysm, and administered a 6-week course of antibiotic treatment. The second case was a 69-year-old Japanese man with diabetes mellitus, who was referred to our hospital with fever, pollakiuria, and pain on urination. Contrast-enhanced whole-body computed tomography revealed lung and prostate abscesses, but no liver abscesses. Contrast-enhanced head magnetic resonance imaging revealed brain abscesses. The sputum, urine, prostate abscess specimen, and aqueous humor cultures revealed K. pneumoniae with the hypermucoviscosity phenotype, which carried magA and rmpA. We performed enucleation of the left eyeball, percutaneous drainage of the prostate abscess, and administered a 5-week course of antibiotic treatment.ConclusionsHypermucoviscous K. pneumoniae can cause infected aneurysms, and the prostate can be the primary site of infection. We suggest that a diagnosis of hvKP invasive syndrome should be considered in all patients who present with K. pneumoniae infection and multiple organ abscesses.

Collaboration


Dive into the Ken-Ichi Oinuma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge