Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Kersemans is active.

Publication


Featured researches published by Ken Kersemans.


Colloids and Surfaces B: Biointerfaces | 2015

Bio-inspired surface modification of PET for cardiovascular applications: Case study of gelatin

E. Diana Giol; David Schaubroeck; Ken Kersemans; Filip De Vos; Sandra Van Vlierberghe; Peter Dubruel

An aqueous-based bio-inspired approach was applied to chemically bind a bio compatible and cell-interactive gelatin layer on poly(ethylene terephthalate) (PET) for cardiovascular applications. The protein layer was immobilized after an initial surface activation via a dopamine coating. The individual and synergetic effect of the dopamine deposition procedure and the substrate nature (pristine versus plasma-treated) was investigated via XPS, AFM, SEM and contact angle measurements. Dependent on the applied parameters, the post dopamine coating presented various surface roughnesses ranging between 96 nm and 210 nm. Subsequent gelatin immobilization mostly induced a smoothening effect, but the synergetic influence of the deposition protocol and plasma treatment resulted in different gelatin conformations. In addition, a comprehensive comparative study between chemically-modified (via dopamine) and physically-modified (physisorption) PET with gelatin was developed within the present study. All investigated samples were submitted to preliminary haemocompatibility tests, which clearly indicated the direct link between blood platelet behaviour and final protein arrangement.


Carbohydrate Polymers | 2016

Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating

Ine Van Nieuwenhove; Achim Salamon; Kirsten Peters; Geert-Jan Graulus; José Martins; Daniel Frankel; Ken Kersemans; Filip De Vos; Sandra Van Vlierberghe; Peter Dubruel

The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering approaches.


Journal of Labelled Compounds and Radiopharmaceuticals | 2013

Radiochemistry devoted to the production of monoamine oxidase (MAO-A and MAO-B) ligands for brain imaging with positron emission tomography†

Ken Kersemans; Nick Van Laeken; Filip De Vos

Monoamine oxidase (MAO) belongs to a family of flavin-containing integral enzymes that are present in the outer mitochondrial membrane in neurons and glial cells in the central nervous system. These enzymes catalyze the oxidative deamination of various neurotransmitters, biogenic amines, and xenobiotics, thereby influencing their availability and physiological activity in brain and body. Over the past decades, many potential positron emission tomography tracers have been put forward to visualize MAO in the brain with varying success, and recent publications on the topic illustrate the continuing interest in the field. The present review gives an overview of the compounds that have been put forward as possible MAO tracers in the brain and focuses on the radiochemical procedures that have been developed to produce them up till now. Relevant radioligands are grouped by the main radiochemical strategies that have been employed to synthesize them, and some interesting details and findings that are crucial to the radiosyntheses are provided.


PLOS ONE | 2017

Synthesis, in vitro and in vivo evaluation of 3β-[18F]fluorocholic acid for the detection of drug-induced cholestasis in mice

Stef De Lombaerde; Sara Neyt; Ken Kersemans; Jeroen Verhoeven; Lindsey Devisscher; Hans Van Vlierberghe; Christian Vanhove; Filip De Vos

Introduction Drug-induced cholestasis is a liver disorder that might be caused by interference of drugs with the hepatobiliary bile acid transporters. It is important to identify this interference early on in drug development. In this work, Positron Emission Tomography (PET)-imaging with a 18F labeled bile acid analogue was introduced to detect disturbed hepatobiliary transport of bile acids. Methods 3β-[18F]fluorocholic acid ([18F]FCA) was prepared by nucleophilic substitution of a mesylated precursor with [18F]fluoride, followed by deprotection with sodium hydroxide. Transport of [18F]FCA was assessed in vitro using CHO-NTCP, HEK-OATP1B1, HEK-OATP1B3 transfected cells and BSEP & MRP2 membrane vesicles. Investigation of [18F]FCA metabolites was performed with primary mouse hepatocytes. Hepatobiliary transport of [18F]FCA was evaluated in vivo in wild-type, rifampicin and bosentan pretreated FVB-mice by dynamic μPET scanning. Results Radiosynthesis of [18F]FCA was achieved in a moderate radiochemical yield (8.11 ± 1.94%; non-decay corrected; n = 10) and high radiochemical purity (>99%). FCA was transported by the basolateral bile acid uptake transporters NTCP, OATP1B1 and OATP1B3. For canalicular efflux, BSEP and MRP2 are the relevant bile acid transporters. [18F]FCA was found to be metabolically stable. In vivo, [18F]FCA showed fast hepatic uptake (4.5 ± 0.5 min to reach 71.8 ± 1.2% maximum % ID) and subsequent efflux to the gallbladder and intestines (93.3 ± 6.0% ID after 1 hour). Hepatobiliary transport of [18F]FCA was significantly inhibited by both rifampicin and bosentan. Conclusion A 18F labeled bile acid analogue, [18F]FCA, has been developed that shows transport by NTCP, OATP, MRP2 and BSEP. [18F]FCA can be used as a probe to monitor disturbed hepatobiliary transport in vivo and accumulation of bile acids in blood and liver during drug development.


Nuclear Medicine and Biology | 2016

Synthesis, in vitro and in vivo small-animal SPECT evaluation of novel technetium labeled bile acid analogues to study (altered) hepatic transporter function.

Sara Neyt; Maarten Vliegen; Bjorn Verreet; Stef De Lombaerde; Kim Braeckman; Christian Vanhove; Maarten T. Huisman; Caroline Dumolyn; Ken Kersemans; Fabian Hulpia; Serge Van Calenbergh; Geert Mannens; Filip De Vos

INTRODUCTION Hepatobiliary transport mechanisms are crucial for the excretion of substrate toxic compounds. Drugs can inhibit these transporters, which can lead to drug-drug interactions causing toxicity. Therefore, it is important to assess this early during the development of new drug candidates. The aim of the current study is the (radio)synthesis, in vitro and in vivo evaluation of a technetium labeled chenodeoxycholic and cholic acid analogue: [(99m)Tc]-DTPA-CDCA and [(99m)]Tc-DTPA-CA, respectively, as biomarker for disturbed transporter functionality. METHODS [99mTc]-DTPA-CDCA([(99m)Tc]-3a) and [99mTc]-DTPA-CA ([(99m)Tc]-3b) were synthesized and evaluated in vitro and in vivo. Uptake of both tracers was investigated in NTCP, OCT1, OATP1B1, OATP1B3 transfected cell lines. Km and Vmax values were determined and compared to [(99m)Tc]-mebrofenin ([(99m)Tc]-MEB). Efflux was investigated by means of CTRL, MRP2 and BSEP transfected inside-out vesicles. Metabolite analysis was performed using pooled human liver S9. Wild type (n=3) and rifampicin treated (n=3) mice were intravenously injected with 37MBq of tracer. After dynamic small-animal SPECT and short CT acquisitions, time-activity curves of heart, liver, gallbladder and intestines were obtained. RESULTS We demonstrated that OATP1B1 and OATP1B3 are the involved uptake transporters of both compounds. Both tracers show a higher affinity compared to [(99m)Tc]-MEB, but are in a similar range as endogenous bile acids for OATP1B1 and OATP1B3. [(99m)Tc]-3a shows higher affinities compared to [(99m)Tc]-3b. Vmax values were lower compared to [(99m)Tc]-MEB, but in the same range as endogenous bile acids. MRP2 was identified as efflux transporter. Less than 7% of both radiotracers was metabolized in the liver. In vitro results were confirmed by in vivo results. Uptake in the liver and efflux to gallbladder + intestines and urinary bladder of both tracers was observed. Transport was inhibited by rifampicin. CONCLUSION The involved transporters were identified; both tracers are taken up in the hepatocytes by OATP1B1 andOATP1B3 with Km and Vmax values in the same range as endogenous bile acids and are secreted into bile canaliculi via MRP2. Dynamic small-animal SPECT imaging can be a useful noninvasive method of visualizing and quantifying hepatobiliary transporter functionality and disturbances thereof in vivo, which could predict drug pharmacokinetics.


Applied Radiation and Isotopes | 2013

Improved HPLC purification strategy for [11C]raclopride and [11C]DASB leading to high radiochemical yields and more practical high quality radiopharmaceutical formulations

Nick Van Laeken; Ken Kersemans; Dieter De Meestere; Ingeborg Goethals; Filip De Vos

A downscaled analytical HPLC purification strategy for [(11)C]raclopride and [(11)C]DASB was proposed to obtain a straightforward produced injectable solution with a substantially reduced volume. Both tracers were radiosynthesized using [(11)C]methyl triflate, and several analytical columns, in combination with ethanol containing eluents, were examined to optimize the chromatographic resolution. This resulted in a 5 mL solution of [(11)C]raclopride, obtained after 6 min, and a 7 mL solution of [(11)C]DASB, obtained after 10 min, using a C16-alkylamide and CN column respectively.


Experimental Biology and Medicine | 2015

First step toward near-infrared continuous glucose monitoring: in vivo evaluation of antibody coupled biomaterials.

Karolien Gellynck; Valérie Kodeck; Elke Van De Walle; Ken Kersemans; Filip De Vos; Heidi Declercq; Peter Dubruel; Lieven Vlaminck; Maria Cornelissen

Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) – enabling glucose monitoring in the near-infrared (NIR) spectrum – were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring.


Journal of Materials Science: Materials in Medicine | 2012

Radiolabeled gelatin type B analogues can be used for non-invasive visualisation and quantification of protein coatings on 3D porous implants.

Ken Kersemans; Tim Desmet; Christian Vanhove; Peter Dubruel; Filip De Vos

This study covers the quantification of the covalent attachment of gelatin type B (GelB) and the subsequent adsorption of Fibronectin (Fn) on poly-ε-caprolactone (PCL) surfaces, functionalised with 2-aminoethyl methacrylate (AEMA) by means of post-plasma UV-irradiation grafting. As typical surface characterisation tools do not allow quantification of deposited amounts of GelB or Fn, radiolabeled analogues were used for direct measurement of the amount of immobilized material. Bolton-Hunter GelB (BHG) and Fn were radioiodinated with 131I and 125I respectively and S-Hynic GelB (SHG) was labeled with 99mTc. Immobilisation of 131I-BHG or 99mTc-SHG on both PCL and PCL-AEMA scaffolds was performed in analogy with earlier work. SPECT images on scaffolds coated with 99mTc-SHG conjugates were acquired on a U-SPECT II camera. There was a clear difference in the amount of deposited 131I-BHG between blanco and AEMA-grafted PCL on 2D samples. No significant differences in immobilization behaviour were observed between 99mTc-SHG and 131I-BHG. Subsequent immobilisation of Fn was successful and depended on the amounts of deposited GelB. SPECT imaging on cylindrical 3D scaffolds confirmed these findings and showed that the amount of immobilized 99mTc-SHG was depth dependant. The architecture of the scaffolds strongly influences the distribution of GelB within these structures. Furthermore, there is a clear difference in the homogeneity of the protein coating when different GelB immobilization protocols were applied. This study shows that radiolabeled compounds are a rapid and accurate tool in the quantitative and qualitative evaluation of the biofunctionalisation of AEMA grafted PCL scaffolds.


PLOS ONE | 2016

In Vivo Evaluation of Blood Based and Reference Tissue Based PET Quantifications of [11C]DASB in the Canine Brain.

Nick Van Laeken; Olivia Taylor; Ingeborgh Polis; Sara Neyt; Ken Kersemans; André Dobbeleir; Jimmy Saunders; Ingeborg Goethals; Kathelijne Peremans; Filip De Vos

This first-in-dog study evaluates the use of the PET-radioligand [11C]DASB to image the density and availability of the serotonin transporter (SERT) in the canine brain. Imaging the serotonergic system could improve diagnosis and therapy of multiple canine behavioural disorders. Furthermore, as many similarities are reported between several human neuropsychiatric conditions and naturally occurring canine behavioural disorders, making this tracer available for use in dogs also provide researchers an interesting non-primate animal model to investigate human disorders. Five adult beagles underwent a 90 minutes dynamic PET scan and arterial whole blood was sampled throughout the scan. For each ROI, the distribution volume (VT), obtained via the one- and two- tissue compartment model (1-TC, 2-TC) and the Logan Plot, was calculated and the goodness-of-fit was evaluated by the Akaike Information Criterion (AIC). For the preferred compartmental model BPND values were estimated and compared with those derived by four reference tissue models: 4-parameter RTM, SRTM2, MRTM2 and the Logan reference tissue model. The 2-TC model indicated in 61% of the ROIs a better fit compared to the 1-TC model. The Logan plot produced almost identical VT values and can be used as an alternative. Compared with the 2-TC model, all investigated reference tissue models showed high correlations but small underestimations of the BPND-parameter. The highest correlation was achieved with the Logan reference tissue model (Y = 0.9266 x + 0.0257; R2 = 0.9722). Therefore, this model can be put forward as a non-invasive standard model for future PET-experiments with [11C]DASB in dogs.


Applied Radiation and Isotopes | 2018

Automated radiosynthesis of Al[ 18 F]PSMA-11 for large scale routine use

Ken Kersemans; K. De Man; J. Courtyn; T. Van Royen; S. Piron; L. Moerman; Boudewijn Brans; F. De Vos

OBJECTIVES We report a reproducible automated radiosynthesis for large scale batch production of clinical grade Al[18F]PSMA-11. METHODS A SynthraFCHOL module was optimized to synthesize Al[18F]PSMA-11 by Al[18F]-chelation. Results Al[18F]PSMA-11 was synthesized within 35min in a yield of 21 ± 3% (24.0 ± 6.0GBq) and a radiochemical purity > 95%. Batches were stable for 4h and conform the European Pharmacopeia guidelines. CONCLUSIONS The automated synthesis of Al[18F]PSMA-11 allows for large scale production and distribution of Al[18F]PSMA-11.

Collaboration


Dive into the Ken Kersemans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Bolcaen

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge