Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Laing is active.

Publication


Featured researches published by Ken Laing.


Microbiology | 2002

Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays

Graham R. Stewart; Lorenz Wernisch; Richard A. Stabler; Joseph A. Mangan; Jason Hinds; Ken Laing; Douglas B. Young; Philip D. Butcher

Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis. The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis. Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass alpha-crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress.


BMC Genomics | 2008

Microarray analysis of defined Mycobacterium tuberculosis populations using RNA amplification strategies

Simon J. Waddell; Ken Laing; Claire Senner; Philip D. Butcher

BackgroundThe amplification of bacterial RNA is required if complex host-pathogen interactions are to be studied where the recovery of bacterial RNA is limited. Here, using a whole genome Mycobacterium tuberculosis microarray to measure cross-genome representation of amplified mRNA populations, we have investigated two approaches to RNA amplification using different priming strategies. The first using oligo-dT primers after polyadenylation of the bacterial RNA, the second using a set of mycobacterial amplification-directed primers both linked to T7 polymerase in vitro run off transcription.ResultsThe reproducibility, sensitivity, and the representational bias introduced by these amplification systems were examined by contrasting expression profiles of the amplified products from inputs of 500, 50 and 5 ng total M. tuberculosis RNA with unamplified RNA from the same source. In addition, as a direct measure of the effectiveness of bacterial amplification for identifying biologically relevant changes in gene expression, a model M. tuberculosis system of microaerophilic growth and non-replicating persistence was used to assess the capability of amplified RNA microarray comparisons. Mycobacterial RNA was reproducibly amplified using both methods from as little as 5 ng total RNA (~equivalent to 2 × 105 bacilli). Differential gene expression patterns observed with unamplified RNA in the switch from aerobic to microaerophilic growth were also reflected in the amplified expression profiles using both methods.ConclusionHere we describe two reproducible methods of bacterial RNA amplification that will allow previously intractable host-pathogen interactions during bacterial infection to be explored at the whole genome level by RNA profiling.


Reproductive Biomedicine Online | 2003

Gene-specific chromatin damage in human spermatozoa can be blocked by antioxidants that target mitochondria

Scott Lamond; Michael Watkinson; Tim R. Rutherford; Ken Laing; Andrew Whiting; Alan Smallwood; Geeta Nargund; S. Campbell; Subhasis Banerjee

Incubation of gradient purified human spermatozoa, which are routinely maintained in media prior to IVF and intracytoplasmic sperm injection (ICSI), induced DNA strand breaks (up to 89 nicks x 10(-3) bp) and chromatin release. Unlike highly dispersed Alu repeat sequences, the centromeric heterochromatin was much less susceptible to endonuclease attack. In addition to chromatin release, the permeability of the sperm membrane was altered as evidenced by reduced accessibility of sperm nuclei to decondensation factors in mouse embryo extracts. Hybridization of cDNA microarrays with DNA released from spermatozoa revealed a consistent hypersensitivity of certain genes to endogenous cleavage including TP53, VHL (tumour suppressors), BRCA1 (breast cancer), NOS1 (neurotransmitter), PECAM1, FLT1 (angiogenesis) and CDKN1C (cell cycle/imprinted). N-tert-butyl hydroxylamine (NTBH), a derivative of the anti-teratogenic alpha-phenyl-N-t-butyl nitrone (PBN) and synthetic superoxide dismutase (SOD)/catalase mimetics inhibited chromatin release and sustained or dissipated relative mitochondrial membrane potential. Together, these results show a link between the hyperactivation of sperm mitochondria and chromosomal damage of specific genes in vitro, and that the potential risk of disruption of paternally contributed genes can be circumvented by antioxidants which are known to target mitochondria.


American Journal of Pathology | 2015

Increased Apoptosis, Altered Oxygen Signaling, and Antioxidant Defenses in First-Trimester Pregnancies with High-Resistance Uterine Artery Blood Flow

Karin Leslie; Guy Whitley; Florian Herse; Ralf Dechend; Sandra Ashton; Ken Laing; B. Thilaganathan; Judith E. Cartwright

The mechanisms of deficient placentation in the first trimester remain poorly understood, although apoptosis, hypoxia, and oxidative stress have been implicated. High uterine artery Doppler resistance indexes (RIs) are predictive of placental complications of pregnancy, such as preeclampsia, fetal growth restriction, and stillbirth. We provide evidence that even in the first trimester, pregnancies with high uterine artery Doppler RI demonstrate alterations in placental gene and protein expression. Apoptosis was significantly higher in high RI placental tissue, as determined by Western blot analysis of cleaved poly (ADP-ribose) polymerase and caspase 3. Protein expression of the trophoblast survival factor insulin-like growth factor-2 was significantly lower. Both high and normal RI placentas showed evidence of hypoxia and oxidative stress with expression of hypoxia-inducible factors 1α and 2α, heat shock protein 70, presence of nitrotyrosine residues, and lipid peroxidation. We observed no exaggerated placental hypoxia or oxidative stress associated with high RI pregnancies. High RI placental tissue demonstrated an altered balance of antioxidant enzyme activity. Hypoxia and oxidative stress appear to be a physiological state in early pregnancy; our data did not support the hypothesis that they are associated with deficient placentation in the first trimester. Higher levels of apoptosis, reduced insulin-like growth factor-2 expression, and altered antioxidant defenses may contribute to abnormal placentation and the later development of pregnancy complications, such as preeclampsia, fetal growth restriction, and stillbirth.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Trophoblast-Induced Changes in C-X-C Motif Chemokine 10 Expression Contribute to Vascular Smooth Muscle Cell Dedifferentiation During Spiral Artery Remodeling

Alison E. Wallace; Judith E. Cartwright; Runa Begum; Ken Laing; B. Thilaganathan; Guy Whitley

Objective—During pregnancy, fetal trophoblast disrupt endothelial cell and vascular smooth muscle cell (VSMC) interactions in spiral arteries of the maternal decidua to enable increased nutritional and oxygen delivery to the fetus. Little is known regarding this transformation because of difficulties of studying human pregnancy in vivo. This study investigated how trophoblast-secreted factors affect the interactions of vascular cells and the differentiation status of VSMC during spiral arteries remodeling using 3-dimensional vascular spheroid coculture. Methods and Results—Endothelial cell and VSMC were cocultured in hanging droplets to form spheroids representing an inverted vessel lumen. Control or conditioned media from an extravillous trophoblast (EVT) cell line was incubated with vascular spheroids for 24 hours. Spheroid RNA was then analyzed by Illumina Sentrix BeadChip array. Spheroids incubated with EVT conditioned medium showed significant up/downregulation of 101 genes (>1.5-fold; P<0.05), including an upregulation of C-X-C motif chemokine 10 (IP-10). C-X-C motif chemokine 10 expression was confirmed by qualitative real-time PCR and Western blot analysis of spheroids, and immunohistochemistry of first trimester decidua and ex vivo dissected nonplacental bed spiral arteries. EVT conditioned medium reduced VSMC expression of differentiation markers, and both EVT conditioned medium and C-X-C motif chemokine 10 increased motility of VSMC indicating dedifferentiation of VSMC. Conclusion—EVT-induced C-X-C motif chemokine 10 expression may contribute to spiral arteries remodeling during pregnancy by altering the motility and differentiation status of the VSMC in the vessel.


Journal of Antimicrobial Chemotherapy | 2016

Accurate detection of Neisseria gonorrhoeae ciprofloxacin susceptibility directly from genital and extragenital clinical samples: towards genotype-guided antimicrobial therapy

Marcus Pond; Catherine Hall; Victoria F. Miari; Michelle Cole; Ken Laing; Heena Jagatia; Emma Harding-Esch; Irene M. Monahan; Tim Planche; Jason Hinds; Catherine A Ison; Stephanie A. Chisholm; Philip D. Butcher; St Sadiq

Introduction Increasing use of nucleic acid amplification tests (NAATs) as the primary means of diagnosing gonococcal infection has resulted in diminished availability of Neisseria gonorrhoeae antimicrobial susceptibility data. We conducted a prospective diagnostic assessment of a real-time PCR assay (NGSNP) enabling direct detection of gonococcal ciprofloxacin susceptibility from a range of clinical sample types. Methods NGSNP, designed to discriminate an SNP associated with ciprofloxacin resistance within the N. gonorrhoeae genome, was validated using a characterized panel of geographically diverse isolates (n = 90) and evaluated to predict ciprofloxacin susceptibility directly on N. gonorrhoeae-positive NAAT lysates derived from genital (n = 174) and non-genital (n = 116) samples (n = 290), from 222 culture-confirmed clinical episodes of gonococcal infection. Results NGSNP correctly genotyped all phenotypically susceptible (n = 49) and resistant (n = 41) panel isolates. Ciprofloxacin-resistant N. gonorrhoeae was responsible for infection in 29.7% (n = 66) of clinical episodes evaluated. Compared with phenotypic susceptibility testing, NGSNP demonstrated sensitivity and specificity of 95.8% (95% CI 91.5%–98.3%) and 100% (95% CI 94.7%–100%), respectively, for detecting ciprofloxacin-susceptible N. gonorrhoeae, with a positive predictive value of 100% (95% CI 97.7%–100%). Applied to urogenital (n = 164), rectal (n = 40) and pharyngeal samples alone (n = 30), positive predictive values were 100% (95% CI 96.8%–100%), 100% (95% CI 87.2%–100%) and 100% (95% CI 82.4%–100%), respectively. Conclusions Genotypic prediction of N. gonorrhoeae ciprofloxacin susceptibility directly from clinical samples was highly accurate and, in the absence of culture, will facilitate use of tailored therapy for gonococcal infection, sparing use of current empirical treatment regimens and enhancing acquisition of susceptibility data for surveillance.


Comparative and Functional Genomics | 2002

The heat shock response of Mycobacterium tuberculosis: linking gene expression, immunology and pathogenesis

Graham R. Stewart; Lorenz Wernisch; Richard A. Stabler; Joseph A. Mangan; Jason Hinds; Ken Laing; Philip D. Butcher; Douglas B. Young

The regulation of heat shock protein (HSP) expression is critically important to pathogens such as Mycobacterium tuberculosis and dysregulation of the heat shock response results in increased immune recognition of the bacterium and reduced survival during chronic infection. In this study we use a whole genome spotted microarray to characterize the heat shock response of M. tuberculosis. We also begin a dissection of this important stress response by generating deletion mutants that lack specific transcriptional regulators and examining their transcriptional profiles under different stresses. Understanding the stimuli and mechanisms that govern heat shock in mycobacteria will allow us to relate observed in vivo expression patterns of HSPs to particular stresses and physiological conditions. The mechanisms controlling HSP expression also make attractive drug targets as part of a strategy designed to enhance immune recognition of the bacterium.


Future Medicinal Chemistry | 2010

Examining the basis of isoniazid tolerance in nonreplicating Mycobacterium tuberculosis using transcriptional profiling

Griselda Tudo; Ken Laing; Denis A. Mitchison; Philip D. Butcher; Simon J. Waddell

BACKGROUND Understanding how growth state influences Mycobacterium tuberculosis responses to antibiotic exposure provides a window into drug action during patient chemotherapy. In this article, we describe the transcriptional programs mediated by isoniazid (INH) during the transition from log-phase to nonreplicating bacilli, from INH-sensitive to INH-tolerant bacilli respectively, using the Wayne model. RESULTS INH treatment did not elicit a transcriptional response from nonreplicating bacteria under microarophilic conditions (NRP2), unlike the induction of a robust and well-characterized INH signature in log-phase bacilli. CONCLUSION The differential regulation (between drug-free NRP2 and log-phase bacilli) of genes directly implicated in INH resistance could not account for the abrogation of INH killing in nongrowing bacilli. Thus, factors affecting the requirement for mycolic acids and the redox status of bacilli are likely responsible for the reduction in INH efficacy. We speculate on additional mechanisms revealed by transcriptome analysis that might account for INH tolerance.


Sexually Transmitted Infections | 2015

Performance evaluation of automated urine microscopy as a rapid, non-invasive approach for the diagnosis of non-gonococcal urethritis

Marcus Pond; Achyuta Nori; Sheel Patel; Ken Laing; Margarita Ajayi; Andrew Copas; Philip D. Butcher; Phillip Hay; St Sadiq

Objectives Gram-stained urethral smear (GSUS), the standard point-of-care test for non-gonococcal urethritis (NGU) is operator dependent and poorly specific. The performance of rapid automated urine flow cytometry (AUFC) of first void urine (FVU) white cell counts (UWCC) for predicting Mycoplasma genitalium and Chlamydia trachomatis urethral infections was assessed and its application to asymptomatic infection was evaluated. Methods Receiver operating characteristic curve analysis, determining FVU-UWCC threshold for predicting M. genitalium or C. trachomatis infection was performed on 208 ‘training’ samples from symptomatic patients and subsequently validated using 228 additional FVUs obtained from prospective unselected patients. Results An optimal diagnostic threshold of >29 UWC/µL gave sensitivities and specificities for either infection of 81.5% (95% CI 65.1% to 91.6%) and 85.8% (79.5% to 90.4%), respectively, compared with 86.8% (71.1% to 95%) and 64.7% (56.9% to 71.7%), respectively, for GSUS, using the training set samples. FVU-UWCC demonstrated sensitivities and specificities of 69.2% (95% CI 48.1% to 84.9%) and 92% (87.2% to 95.2%), respectively, when using validation samples. In asymptomatic patients where GSUS was not used, AUFC would have enabled more infections to be detected compared with clinical considerations only (71.4% vs 28.6%; p=0.03). The correlation between UWCC and bacterial load was stronger for M. genitalium compared with C. trachomatis (τ=0.426, p≤0.001 vs τ=0.295, p=0.022, respectively). Conclusions AUFC offers improved specificity over microscopy for predicting C. trachomatis or M. genitalium infection. Universal AUFC may enable non-invasive diagnosis of asymptomatic NGU at the PoC. The degree of urethral inflammation exhibits a stronger association with pathogen load for M. genitalium compared with C. trachomatis.


Annals of the Rheumatic Diseases | 2017

Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation

A. Kuttapitiya; Lena Assi; Ken Laing; Caroline Hing; Philip Mitchell; Guy Whitley; Abiola Harrison; Franklyn A. Howe; Vivian Ejindu; Christine Heron; Nidhi Sofat

Objective Bone marrow lesions (BMLs) are well described in osteoarthritis (OA) using MRI and are associated with pain, but little is known about their pathological characteristics and gene expression. We evaluated BMLs using novel tissue analysis tools to gain a deeper understanding of their cellular and molecular expression. Methods We recruited 98 participants, 72 with advanced OA requiring total knee replacement (TKR), 12 with mild OA and 14 non-OA controls. Participants were assessed for pain (using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)) and with a knee MRI (using MOAKS). Tissue was then harvested at TKR for BML analysis using histology and tissue microarray. Results The mean (SD) WOMAC pain scores were significantly increased in advanced OA 59.4 (21.3) and mild OA 30.9 (20.3) compared with controls 0.5 (1.28) (p<0.0001). MOAKS showed all TKR tissue analysed had BMLs, and within these lesions, bone marrow volume was starkly reduced being replaced by dense fibrous connective tissue, new blood vessels, hyaline cartilage and fibrocartilage. Microarray comparing OA BML and normal bone found a significant difference in expression of 218 genes (p<0.05). The most upregulated genes included stathmin 2, thrombospondin 4, matrix metalloproteinase 13 and Wnt/Notch/catenin/chemokine signalling molecules that are known to constitute neuronal, osteogenic and chondrogenic pathways. Conclusion Our study is the first to employ detailed histological analysis and microarray techniques to investigate knee OA BMLs. BMLs demonstrated areas of high metabolic activity expressing pain sensitisation, neuronal, extracellular matrix and proinflammatory signalling genes that may explain their strong association with pain.

Collaboration


Dive into the Ken Laing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge