Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Okabayashi is active.

Publication


Featured researches published by Ken Okabayashi.


Mycopathologia | 2007

Microreview: Capsule-associated genes of Cryptococcus neoformans

Ken Okabayashi; Atsuhiko Hasegawa; Toshi Watanabe

Cryptococcosis, caused by Cryptococcus neoformans is a common systemic mycosis in man and animals, particularly immunocompromised patients. This pathogenic fungus produces a thick extracellular polysaccharide capsule. Four capsule-associated genes (CAP10, CAP59, CAP60, CAP64) were cloned and sequenced, and proved to be essential for capsule synthesis. However biochemical functions of CAP gene products have not been clarified yet. Recently, the relatedness of the polysaccharide capsule and four capsule-associated genes has partly been elucidated. Nucleotide sequence of four CAP gene fragments was analyzed for phylogenetic relationships, and they were in agreement with the conventional classification of varieties and serotypes within C. neoformans. Expression of four CAP genes and capsule size were examined using two media containing different amount of glucose, and the results indicated that CAP genes might play important roles in elaboration of extracellular polysaccharide capsule. Furthermore, analyses of CAP genes in various clinical samples would give the useful information to diagnose cryptococcosis in human and animals.


Pflügers Archiv: European Journal of Physiology | 2013

E2f1-deficient NOD/SCID mice have dry mouth due to a change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland

Keitaro Satoh; Takanori Narita; Miwako Matsuki-Fukushima; Ken Okabayashi; Tatsuro Ito; Hidenobu Senpuku; Hiroshi Sugiya

Non-obese diabetic (NOD) mice have been used as a model for dry mouth. NOD mice lacking the gene encoding E2f1, a transcription factor, develop hyposalivation more rapidly progressively than control NOD mice. However, the model mice are associated with an underlying disease such as diabetes. We have now established E2f1-deficient NOD/severe combined immunodeficiency disease (NOD/SCID.E2f1−/−) mice to avoid the development of diabetes (Matsui-Inohara et al., Exp Biol Med (Maywood) 234(12):1525–1536, 2009). In this study, we investigated the pathophysiological features of dry mouth using NOD/SCID.E2f1−/− mice. In NOD/SCID.E2f1−/− mice, the volume of secreted saliva stimulated with pilocarpine is about one third that of control NOD/SCID mice. In behavioral analysis, NOD/SCID.E2f1−/− mice drank plenty of water when they ate dry food, and the frequency and time of water intake were almost double compared with control NOD/SCID mice. Histological analysis of submandibular glands with hematoxylin–eosin stain revealed that NOD/SCID.E2f1−/− mice have more ducts than NOD/SCID mice. In western blot analysis, the expression of aquaporin 5 (AQP5), a marker of acinar cells, in parotid and in submandibular glands of NOD/SCID.E2f1−/− mice was lower than in NOD/SCID mice. Immunohistochemical analysis of parotid and submandibular acini revealed that the localization of AQP5 in NOD/SCID.E2f1−/− mice differs from that in NOD/SCID mice; AQP5 was leaky and diffusively localized from the apical membrane to the cytosol in NOD/SCID.E2f1−/− mice. The ubiquitination of AQP5 was detected in submandibular glands of NOD/SCID.E2f1−/− mice. These findings suggest that the change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland cause the pathogenesis of hyposalivation in NOD/SCID.E2f1−/− mice.


Mycopathologia | 2005

Expression of capsule-associated genes of Cryptococcus neoformans.

Ken Okabayashi; Rui Kano; Shinichi Watanabe; Atsuhiko Hasegawa

Cryptococcus neoformans produces an extracellular polysaccharide capsule that is related to its virulence. The production of capsular components was reported to be accelerated when cultured on media with lower amount of glucose. In this study, relationship between capsule synthesis and expression of capsule-associated genes (CAP genes) was investigated by quantitative real-time PCR analysis. Normally encapsulated strains and a stable acapsular strain were cultured in 1% polypepton medium with 0.1% or 15% glucose. The results of assessment of the capsule size showed that the capsule of yeast cells cultured in the medium with low amount of glucose was thicker than that with high amount of glucose. The CAP gene expressions of normally encapsulated strains were higher in the medium with 0.1% glucose than in the medium with 15% glucose. Furthermore, CAP10, CAP59 and CAP60 genes were expressed very low in a stable acapsular strain, and CAP64 gene was not expressed. Results of assessment of capsule size and CAP gene expressions by quantitative real-time PCR analysis indicated that CAP gene expressions might be related to the production of capsule, and that glucose concentration in culture media might be related to the expression of CAP genes.


Journal of Veterinary Medical Science | 2015

Differentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factor

Rei Nakano; Kazuya Edamura; Tomohiro Nakayama; Kenji Teshima; Kazushi Asano; Takanori Narita; Ken Okabayashi; Hiroshi Sugiya

We investigated the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into voltage- and glutamate-responsive neuron-like cells. BMSCs were obtained from the bone marrow of healthy beagle dogs. Canine BMSCs were incubated with the basal medium for neurons containing recombinant human basic fibroblast growth factor (bFGF; 100 ng/ml). The viability of the bFGF-treated cells was assessed by a trypan blue exclusion assay, and the morphology was monitored. Real-time RT-PCR was performed to evaluate mRNA expression of neuronal, neural stem cell and glial markers. Western blotting and immunocytochemical analysis for the neuronal markers were performed to evaluate the protein expression and localization. The Ca2+ mobilization of the cells was evaluated using the Ca2+ indicator Fluo3 to monitor Ca2+ influx. To investigate the mechanism of bFGF-induced neuronal differentiation, the fibroblast growth factor receptor inhibitor, the phosphoinositide 3-kinase inhibitor or the Akt inhibitor was tested. The bFGF treatment resulted in the maintenance of the viability of canine BMSCs for 10 days, in the expression of neuronal marker mRNAs and proteins and in the manifestation of neuron-like morphology. Furthermore, in the bFGF-treated BMSCs, a high concentration of KCl and L-glutamate induced an increase in intracellular Ca2+ levels. Each inhibitor significantly attenuated the bFGF-induced increase in neuronal marker mRNA expression. These results suggest that bFGF contributes to the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells and may lead to the development of new cell-based treatments for neuronal diseases.


Antimicrobial Agents and Chemotherapy | 2001

Expression of Ubiquitin Gene in Microsporum canis and Trichophyton mentagrophytes Cultured with Fluconazole

Rui Kano; Ken Okabayashi; Yuka Nakamura; Shinichi Watanabe; Atsuhiko Hasegawa

ABSTRACT The expression of the ubiquitin (Ub) gene in dermatophytes was examined for its relation to resistance against the antifungal drug fluconazole. The nucleotide sequences and the deduced amino acid sequences of the Ub gene in Microsporum canis were proven to be 99% similar to those of the Ub gene in Trichophyton mentagrophytes. Expression of mRNA of Ub in M. canisand T. mentagrophytes was enhanced when the fungi were cultured with fluconazole. The antifungal activity of fluconazole against these dermatophytes was increased in the presence of Ub proteasome inhibitor.


Medical Mycology | 2006

Capsule-associated genes of serotypes of Cryptococcus neoformans, especially serotype AD.

Ken Okabayashi; Rui Kano; Yuka Nakamura; Shinichi Watanabe; Atsuhiko Hasegawa

Cryptococcus neoformans has been divided into five serotypes (A, B, C, D and AD) by the slide agglutination test against antigens of the polysaccharide capsule component. The isolates of serotype AD show positive reactions with both serotype A and D antigens. In this study, the nucleotide sequences of the capsule-associated genes CAP10, CAP59, CAP60 and CAP64 from five serotypes of C. neoformans were analyzed for their phylogenetic relationships, with special regard to serotype AD. The nucleotide sequence analyses showed that serotype AD had two different sequences in these four genes. Phylogenetic analysis revealed that these genes from serotype AD are included in the two clusters of serotypes A and D, but not in serotypes B or C. Southern blot analysis of genomic DNAs of serotypes A, D and AD digested with BamH I by hybridizing with a CAP64 probe indicated that both bands of fragments detected in serotypes A and D were also detected in serotype AD. These results confirm that serotype AD could be a mixture of serotypes A and D in the four CAP genes, consistent with its putative origin detected by the hybridization of these two serotypes. The present results indicated that serotypes of C. neoformans could be identified by the phylogenetic analyses of CAP genes.


Scientific Reports | 2017

JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts

Taku Kitanaka; Rei Nakano; Nanako Kitanaka; Taro Kimura; Ken Okabayashi; Takanori Narita; Hiroshi Sugiya

The proinflammatory cytokine interleukin 1β (IL-1β) induces prostaglandin E2 (PGE2) production via upregulation of cyclooxygenase-2 (COX-2) expression in synovial fibroblasts. This effect of IL-1β is involved in osteoarthritis. We investigated MAPK signaling pathways in IL-1β-induced COX-2 expression in feline synovial fibroblasts. In the presence of MAPK inhibitors, IL-1β-induced COX-2 expression and PGE2 release were both attenuated. IL-1β induced the phosphorylation of p38, JNK, MEK, and ERK1/2. A JNK inhibitor prevented not only JNK phosphorylation but also MEK and ERK1/2 phosphorylation in IL-1β-stimulated cells, but MEK and ERK1/2 inhibitors had no effect on JNK phosphorylation. A p38 inhibitor prevented p38 phosphorylation, but had no effect on MEK, ERK1/2, and JNK phosphorylation. MEK, ERK1/2, and JNK inhibitors had no effect on p38 phosphorylation. We also observed that in IL-1β-treated cells, phosphorylated MEK, ERK1/2, and JNK were co-precipitated with anti-phospho-MEK, ERK1/2, and JNK antibodies. The silencing of JNK1 in siRNA-transfected fibroblasts prevented IL-1β to induce phosphorylation of MEK and ERK1/2 and COX-2 mRNA expression. These observations suggest that JNK1 phosphorylation is necessary for the activation of the MEK/ERK1/2 pathway and the subsequent COX-2 expression for PGE2 release, and p38 independently contributes to the IL-1β effect in synovial fibroblasts.


Veterinary Immunology and Immunopathology | 2015

Activation of MEK/ERK pathways through NF-κB activation is involved in interleukin-1β-induced cyclooxygenease-2 expression in canine dermal fibroblasts.

Hisashi Tsuchiya; Rei Nakano; Tadayoshi Konno; Ken Okabayashi; Takanori Narita; Hiroshi Sugiya

The proinflammatory cytokine interleukin-1β (IL-1β) induced cyclooxygenases-2 (COX-2) mRNA expression and lipid mediator prostaglandin E2 release and in a time- and dose-dependent manner in canine dermal fibroblasts. The MEK inhibitor U0126 and the ERK inhibitor FR180204 clearly inhibited IL-1β-induced prostaglandin E2 release and COX-2 mRNA expression. IL-1β enhanced ERK1/2 phosphorylation, which was attenuated by inhibitors of MEK and ERK. The NF-κB inhibitor BAY 11-7082 also suppressed IL-1β-induced prostaglandin E2 release and COX-2 mRNA expression. Treatment of fibroblasts with IL-1β led to the phosphorylation of p65 and degradation of IκBα occurred, indicating that IL-1β treatment activated NF-κB. MEK and ERK1/2 inhibitors had no effect on the phosphorylation of p65 subunit induced by IL-1β, whereas the NF-κB inhibitor completely blocked IL-1β-induced phosphorylation of ERK1/2. We also observed that IκBα-knockdown enhanced the phosphorylation of p65 and ERK1/2. These findings suggest that stimulation of MEK/ERK signaling pathway by NF-κB activation regulates IL-1β-induced COX-2 expression and subsequent prostaglandin E2 release in canine dermal fibroblasts.


PLOS ONE | 2016

Expression and Function of Interleukin-1β-Induced Neutrophil Gelatinase-Associated Lipocalin in Renal Tubular Cells.

Tadayoshi Konno; Rei Nakano; Ryo Mamiya; Hisashi Tsuchiya; Taku Kitanaka; Shinichi Namba; Nanako Kitanaka; Ken Okabayashi; Takanori Narita; Hiroshi Sugiya; Benedetta Bussolati

Acute kidney injury (AKI) is characterized by a sudden loss of renal function. Early recognition of AKI, especially in critically ill patients, is essential for adequate therapy. Currently, neutrophil gelatinase-associated lipocalin (NGAL) is considered to be an effective biomarker of AKI; however, the regulation of its expression and function in renal tubular cells remains unclear. In this study, we investigated the regulation of the expression and function of NGAL in IL-1β-treated Madin–Darby canine kidney (MDCK) cells as a model of renal tubular cells. IL-1β induced a disturbance in the localization of E-cadherin and zonaoccludin-1 (ZO-1). The transepithelial electrical resistance (TER) also decreased 5 days after IL-1β treatment. IL-1β induced NGAL mRNA expression and protein secretion in a time- and dose-dependent manner, which occurred faster than the decrease in TER. In the presence of ERK1/2 and p38 inhibitors, IL-1β-induced NGAL mRNA expression and protein secretion were significantly attenuated. In the presence of recombinant NGAL, IL-1β-induced disturbance in the localization of E-cadherin and ZO-1 was attenuated, and the decrease in TER was partially maintained. These results suggest that NGAL can be used as a biomarker for AKI and that it functions as a protector from AKI.


PLOS ONE | 2015

Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway.

Rei Nakano; Kazuya Edamura; Tomohiro Nakayama; Takanori Narita; Ken Okabayashi; Hiroshi Sugiya

Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs.

Collaboration


Dive into the Ken Okabayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge