Ken Sahara
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ken Sahara.
Sexual Development | 2007
Walther Traut; Ken Sahara; František Marec
The speciose insect order Lepidoptera (moths and butterflies) and their closest relatives, Trichoptera (caddis flies), share a female-heterogametic sex chromosome system. Originally a Z/ZZ (female/male) system, it evolved by chromosome rearrangement to a WZ/ZZ (female/male) system in the most species-rich branch of Lepidoptera, a monophyletic group consisting of Ditrysia and Tischeriina, which together comprise more than 98% of all species. Further sporadic rearrangements created multi-sex chromosome systems; sporadic losses of the W changed the system formally back to Z/ZZ in some species. Primary sex determination depends on a Z-counting mechanism in Z/ZZ species, but on a female-determining gene, Fem, in the W chromosome of the silkworm. The molecular mechanism is unknown in both cases. The silkworm shares the last step, dsx, of the hierarchical sex-determining pathway with Drosophila and other insects investigated, but probably not the intermediate steps between the primary signal and dsx. The W chromosome is heterochromatic in most species. It contains few genes and is flooded with interspersed repetitive elements. In interphase nuclei of females it is readily discernible as a heterochromatic body which grows with increasing degree of polyploidy in somatic cells. It is used as a marker for the genetic sex in studies of intersexes and Wolbachia infections. The sex chromosome system is being exploited in economically important species. Special strains have been devised for mass rearing of male-only broods in the silkworm for higher silk production and in pest species for the release of sterile males in pest management programs.
Genetics | 2006
Yuji Yasukochi; Laksmikutty A. Ashakumary; Kotaro Baba; Atsuo Yoshido; Ken Sahara
A second-generation linkage map was constructed for the silkworm, Bombyx mori, focusing on mapping Bombyx sequences appearing in public nucleotide databases and bacterial artificial chromosome (BAC) contigs. A total of 874 BAC contigs containing 5067 clones (22% of the library) were constructed by PCR-based screening with sequence-tagged sites (STSs) derived from whole-genome shotgun (WGS) sequences. A total of 523 BAC contigs, including 342 independent genes registered in public databases and 85 expressed sequence tags (ESTs), were placed onto the linkage map. We found significant synteny and conserved gene order between B. mori and a nymphalid butterfly, Heliconius melpomene, in four linkage groups (LGs), strongly suggesting that using B. mori as a reference for comparative genomics in Lepidotera is highly feasible.
Chromosoma | 2003
Ken Sahara; Atsuo Yoshido; Naoko Kawamura; Akio Ohnuma; Hiroaki Abe; Kazuei Mita; Toshikazu Oshiki; Toru Shimada; Shin Ichiro Asano; Hisanori Bando; Yuji Yasukochi
We isolated four W chromosome-derived bacterial artificial chromosome (W-BAC) clones from Bombyx mori BAC libraries by the polymerase chain reaction and used them as probes for fluorescence in situ hybridization (FISH) on chromosome preparations from B. mori females. All four W-BAC probes surprisingly highlighted the whole wild-type W sex chromosome and also identified the entire original W-chromosomal region in W chromosome-autosome translocation mutants. This is the first successful identification of a single chromosome by means of BAC-FISH in species with holokinetic chromosomes. Genomic in situ hybridization (GISH) by using female-derived genomic probes highlighted the W chromosome in a similar chromosome-painting manner. Besides the W, hybridization signals of W-BAC probes also occurred in telomeric and/or subtelomeric regions of the autosomes. These signals coincided well with those of female genomic probes except one additional GISH signal that was observed in a large heterochromatin block of one autosome pair. Our results support the opinion that the B. mori W chromosome accumulated transposable elements and other repetitive sequences that also occur, but scattered, elsewhere in the respective genome.
Archives of Virology | 2003
R. Isobe; Katsura Kojima; Takahiro Matsuyama; G.-X. Quan; T. Kanda; T. Tamura; Ken Sahara; Shin-ichiro Asano; Hisanori Bando
Summary.dsRNA is a powerful tool for gene-specific silencing in plants and animals. In this study, we examined the use of gene silencing in generating transgenic silkworms resistant to the Bombyx mori nucleopolyhedrovirus (BmNPV). Using a transposon piggyBac system, we first generated BmN cells (rBmN-lef1), which carried artificial genes designed for expressing dsRNAs with sequences of the essential viral gene lef-1. NPV DNA microarray analysis revealed that the accumulation of lef-1 mRNA was successfully inhibited in rBmN-lef1 infected with BmNPV. The virus titer in the culture medium of rBmN-lef1 at 48 hr post-infection (h.p.i.) was 50% of that of the control cells. Moderate BmNPV-resistance caused by transgenesis of the artificial dsRNA-expressing gene was confirmed in the transgenic silkworms. Virus production was reduced in transgenic silkworms relative to controls up to 96 hrs after viral inoculation. Although complete protection was not achieved and the transgenic larvae ultimately died, this is the first report to show the use of RNAi in confering enhanced viral resistance on transgenic animals.
Development Genes and Evolution | 2004
Yuji Yasukochi; Laksmikutty A. Ashakumary; Chengcang Wu; Atsuo Yoshido; Junko Nohata; Kazuei Mita; Ken Sahara
A bacterial artificial chromosome (BAC) contig was constructed by chromosome walking, starting from the Hox genes of the silkworm, Bombyx mori. Bombyx orthologues of the labial (lab) and zerknült (zen) genes were newly identified. The size of the BAC contig containing the Hox gene cluster—except the lab and Hox 2 genes—was estimated to be more than 2 Mb. The Bombyx Hox cluster was mapped to linkage group (LG) 6. The lab gene was mapped on the same LG, but far apart from the cluster. Fluorescence in situ hybridization analysis confirmed that the major Hox gene cluster and lab were at different locations on the same chromosome in B. mori.
Genome | 2007
Ken Sahara; Atsuo Yoshido; František MarecF. Marec; Iva Fuková; Hong-Bin ZhangH.-B. Zhang; Cheng-Cang WuC.-C. Wu; Marian R. Goldsmith; Yuji Yasukochi
The successful assignment of the existing genetic linkage groups (LGs) to individual chromosomes and the second-generation linkage map obtained by mapping a large number of bacterial artificial chromosome (BAC) contigs in the silkworm, Bombyx mori, together with public nucleotide sequence databases, offer a powerful tool for the study of synteny between karyotypes of B. mori and other lepidopteran species. Conserved synteny of genes between particular chromosomes can be identified by comparatively mapping orthologous genes of the corresponding linkage groups with the help of BAC-FISH (fluorescent in situ hybridization). This technique was established in B. mori for 2 differently labeled BAC probes simultaneously hybridized to pachytene bivalents. To achieve higher-throughput comparative mapping using BAC-FISH in Lepidoptera, we developed a protocol for five-color BAC-FISH, which allowed us to map simultaneously 6 different BAC probes to chromosome 15 in B. mori. We identified orthologs of 6 B. mori LG15 genes (RpP0, RpS8, eIF3, RpL7A, RpS23, and Hsc70) for the tobacco hornworm, Manduca sexta, and selected the ortholog-containing BAC clones from an M. sexta BAC library. All 6 M. sexta BAC clones hybridized to a single M. sexta bivalent in pachytene spermatocytes. Thus, we have confirmed the conserved synteny between the B. mori chromosome 15 and the corresponding M. sexta chromosome (hence provisionally termed chromosome 15).
Chromosoma | 2005
Atsuo Yoshido; František Marec; Ken Sahara
We have developed a simple method to resolve the sex chromosome constitution in females of Lepidoptera by using a combination of genomic in situ hybridization (GISH) and fluorescence in situ hybridization with (TTAGG)n telomeric probe (telomere-FISH). In pachytene configurations of sex chromosomes, GISH differentiated W heterochromatin and telomere-FISH detected the chromosome ends. With this method we showed that Antheraea yamamai has a standard system with a fully differentiated W–Z sex chromosome pair. In Orgyia antiqua, we confirmed the presence of neo-W and neo-Z chromosomes, which most probably originated by fusion of the ancestral W and Z with an autosome pair. In contrast to earlier data, Orgyia thyellina females displayed a neo-ZW1W2 sex chromosome constitution. A neo-WZ1Z2 trivalent was found in females of Samia cynthia subsp. indet., originating from a population in Nagano, Japan. Whereas another subspecies collected in Sapporo, Japan, and determined as S. cynthia walkeri, showed a neo-W/neo-Z bivalent similar to O. antiqua, and the subspecies S. cynthia ricini showed a Z univalent (a Z/ZZ system). The combination of GISH and telomere-FISH enabled us to acquire not only reliable information about sex chromosome constitution but also an insight into sex chromosome evolution in Lepidoptera.
Insect Molecular Biology | 2005
Hiroaki Abe; Motoaki Seki; Fumi Ohbayashi; Nobuhiko Tanaka; J. Yamashita; Tsuguru Fujii; Takeshi Yokoyama; M. Takahashi; Yutaka Banno; Ken Sahara; Atsuo Yoshido; J. Ihara; Yuji Yasukochi; Kazuei Mita; Masahiro Ajimura; Masataka G. Suzuki; Toshikazu Oshiki; Toru Shimada
In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female‐determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra‐W strain (T(W;3)Ze chromosome) and the Black‐egg‐W strain (T(W;10)+w−2 chromosome) at the molecular level. Initially, we undertook a project to identify W‐specific RAPD markers, in addition to the three already established W‐specific RAPD markers (W‐Kabuki, W‐Samurai and W‐Kamikaze). Following the screening of 3648 arbitrary 10‐mer primers, we obtained nine W‐specific RAPD marker sequences (W‐Bonsai, W‐Mikan, W‐Musashi, W‐Rikishi, W‐Sakura, W‐Sasuke, W‐Yukemuri‐L, W‐Yukemuri‐S and BMC1‐Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W‐specific RAPD markers in the normal W chromosomes of twenty‐five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra‐W strain (T(W;3)Ze chromosome) lacked the W‐Samurai and W‐Mikan RAPD markers and the Black‐egg‐W strain (T(W;10)+w−2 chromosome) lacked the W‐Mikan RAPD marker. These results strongly indicate that the regions containing the W‐Samurai and W‐Mikan RAPD markers or the W‐Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+w−2 chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene.
Zygote | 2002
Ken Sahara; Naoko Kawamura
Silkworm males produce dimorphic sperm, nucleate eupyrene sperm and anucleate apyrene sperm. Apyrene sperm have been speculated to have an assisting role in fertilisation. However, the coexistence of eupyrene and apyrene sperm in the testis and female reproductive organs has made it difficult to define the role of apyrene sperm. Polyploid males are highly sterile. Microscopic observation revealed that the elimination of eupyrene nuclei by peristaltic squeezing caused the sterility of polyploids. Heat-shock applied to pupae of Daizo males (DH) also induced high sterility due to the lack of normal apyrene sperm. When eupyrene sperm of sterile DH males and apyrene sperm of sterile polyploid males were mixed by double copulation, a remarkable increase in fertility of the double-mated females was observed. This finding strongly suggests that the apyrene sperm are indispensable in fertilisation of the silkworm and that polyploid apyrene sperm function as a substitute for diploid sperm. We established an experimental system in which we can separate the two types of sperm for further studies on their functions without chemical and/or mechanical treatments.
Journal of Insect Physiology | 2003
Naoko Kawamura; Ken Sahara; Hajime Fugo
Two types of sperm, nucleate eupyrene and anucleate apyrene, occur in the silkworm as in other lepidopteran species. Hormones and other substances have been assumed to play important roles in sperm dimorphism. We established an in vitro cultivation system for silkworm spermatocytes, and found that apyrene sperm are not produced when spermatocytes from larval testes are cultivated, though eupyrene spermatocytes develop normally into mature sperm. Based on the fact that ecdysteroid titers increase rapidly and peak 1 day after spinning, and that the amount of glycogen reaches its peak 1 day before the spinning stage, we studied the effects of adding glucose and/or 20-hydroxyecdysone to the culture medium. The experiments disclosed a significant additive effect of both substances on apyrene sperm production.