Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Shirasu is active.

Publication


Featured researches published by Ken Shirasu.


Nature | 2008

Inhibition of shoot branching by new terpenoid plant hormones

Mikihisa Umehara; Atsushi Hanada; Satoko Yoshida; Kohki Akiyama; Tomotsugu Arite; Noriko Takeda-Kamiya; Hiroshi Magome; Yuji Kamiya; Ken Shirasu; Koichi Yoneyama; Junko Kyozuka; Shinjiro Yamaguchi

Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class—or their biosynthetic precursors—in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.


Proceedings of the National Academy of Sciences of the United States of America | 2007

CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis

Ayako Miya; Premkumar Albert; Tomonori Shinya; Yoshitake Desaki; Kazuya Ichimura; Ken Shirasu; Yoshihiro Narusaka; Naoto Kawakami; Hanae Kaku; Naoto Shibuya

Chitin is a major component of fungal cell walls and serves as a microbe-associated molecular pattern (MAMP) for the detection of various potential pathogens in innate immune systems of both plants and animals. We recently showed that chitin elicitor-binding protein (CEBiP), plasma membrane glycoprotein with LysM motifs, functions as a cell surface receptor for chitin elicitor in rice. The predicted structure of CEBiP does not contain any intracellular domains, suggesting that an additional component(s) is required for signaling through the plasma membrane into the cytoplasm. Here, we identified a receptor-like kinase, designated CERK1, which is essential for chitin elicitor signaling in Arabidopsis. The KO mutants for CERK1 completely lost the ability to respond to the chitin elicitor, including MAPK activation, reactive oxygen species generation, and gene expression. Disease resistance of the KO mutant against an incompatible fungus, Alternaria brassicicola, was partly impaired. Complementation with the WT CERK1 gene showed cerk1 mutations were responsible for the mutant phenotypes. CERK1 is a plasma membrane protein containing three LysM motifs in the extracellular domain and an intracellular Ser/Thr kinase domain with autophosphorylation/myelin basic protein kinase activity, suggesting that CERK1 plays a critical role in fungal MAMP perception in plants.


The Plant Cell | 1997

Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms.

Ken Shirasu; H Nakajima; V K Rajasekhar; Richard A. Dixon; Christopher J. Lamb

The phenylpropanoid-derived natural product salicylic acid (SA) plays a key role in disease resistance. However, SA administered in the absence of a pathogen is a paradoxically weak inductive signal, often requiring concentrations of 0.5 to 5 mM to induce acquired resistance or related defense mechanisms or to precondition signal systems. In contrast, endogenous SA accumulates to concentrations of < 70 microM at the site of attempted infection. Here, we show that although 10 to 100 microM SA had negligible effects when administered to soybean cell suspensions in the absence of a pathogen, physiological concentrations of SA markedly enhanced the induction of defense gene transcripts, H2O2 accumulation, and hypersensitive cell death by an avirulent strain of Pseudomonas syringae pv glycinea, with optimal effects being at approximately 50 microM. SA also synergistically enhanced H2O2 accumulation in response to the protein phosphatase type 2A inhibitor cantharidin in the absence of a pathogen. The synergistic effect of SA was potent, rapid, and insensitive to the protein synthesis inhibitor cycloheximide, and we conclude that SA stimulates an agonist-dependent gain control operating at an early step in the signal pathway for induction of the hypersensitive response. This fine control mechanism differs from previously described time-dependent, inductive coarse control mechanisms for SA action in the absence of a pathogen. Induction of H2O2 accumulation and hypersensitive cell death by avirulent P. s. glycinea was blocked by the phenylpropanoid synthesis inhibitor alpha-aminooxy-beta-phenylpropionic acid, and these responses could be rescued by exogenous SA. Because the agonist-dependent gain control operates at physiological levels of SA, we propose that rapid fine control signal amplification makes an important contribution to SA function in the induction of disease resistance mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The main auxin biosynthesis pathway in Arabidopsis

Kiyoshi Mashiguchi; Keita Tanaka; Tatsuya Sakai; Satoko Sugawara; Hiroshi Kawaide; Masahiro Natsume; Atsushi Hanada; Takashi Yaeno; Ken Shirasu; Hong Yao; Paula McSteen; Yunde Zhao; Ken-ichiro Hayashi; Yuji Kamiya; Hiroyuki Kasahara

The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic and enzymatic studies demonstrated that both TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) flavin monooxygenase-like proteins are required for biosynthesis of IAA during plant development, but these enzymes were placed in two independent pathways. In this article, we demonstrate that the TAA family produces indole-3-pyruvic acid (IPA) and the YUC family functions in the conversion of IPA to IAA in Arabidopsis (Arabidopsis thaliana) by a quantification method of IPA using liquid chromatography–electrospray ionization–tandem MS. We further show that YUC protein expressed in Escherichia coli directly converts IPA to IAA. Indole-3-acetaldehyde is probably not a precursor of IAA in the IPA pathway. Our results indicate that YUC proteins catalyze a rate-limiting step of the IPA pathway, which is the main IAA biosynthesis pathway in Arabidopsis.


Nature Genetics | 2012

Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

Richard O'Connell; Michael R. Thon; Stéphane Hacquard; Stefan G. Amyotte; Jochen Kleemann; Maria F. Torres; Ulrike Damm; Ester Buiate; Lynn Epstein; Noam Alkan; Janine Altmüller; Lucia Alvarado-Balderrama; Christopher Bauser; Christian Becker; Bruce W. Birren; Zehua Chen; Jae Young Choi; Jo Anne Crouch; Jonathan P. Duvick; Mark A. Farman; Pamela Gan; David I. Heiman; Bernard Henrissat; Richard J. Howard; Mehdi Kabbage; Christian Koch; Barbara Kracher; Yasuyuki Kubo; Audrey D. Law; Marc-Henri Lebrun

Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants

Jack Peart; Rui Lu; Ari Sadanandom; Isabelle Malcuit; Peter Moffett; David C. Brice; Leif Schauser; Daniel A. W. Jaggard; Shunyuan Xiao; Mark J. Coleman; Max Dow; Jonathan D. G. Jones; Ken Shirasu; David C. Baulcombe

Homologues of the yeast ubiquitin ligase-associated protein SGT1 are required for disease resistance in plants mediated by nucleotide-binding site/leucine-rich repeat (NBS-LRR) proteins. Here, by silencing SGT1 in Nicotiana benthamiana, we extend these findings and demonstrate that SGT1 has an unexpectedly general role in disease resistance. It is required for resistance responses mediated by NBS-LRR and other R proteins in which pathogen-derived elicitors are recognized either inside or outside the host plant cell. A requirement also exists for SGT1 in nonhost resistance in which all known members of a host species are resistant against every characterized isolate of a pathogen. Our findings show that silencing SGT1 affects diverse types of disease resistance in plants and support the idea that R protein-mediated and nonhost resistance may involve similar mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2003

HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis

Akira Takahashi; Catarina Casais; Kazuya Ichimura; Ken Shirasu

RAR1 and its interacting partner SGT1 play a central role in plant disease resistance triggered by a number of resistance (R) proteins. We identified cytosolic heat shock protein 90 (HSP90), a molecular chaperone, as another RAR1 interacting protein by yeast two-hybrid screening. RAR1 interacts with the N-terminal half of HSP90 that contains the ATPase domain. HSP90 also specifically interacts with SGT1 that contains a tetratricopeptide repeat motif and a domain with similarity to the cochaperone p23. In Arabidopsis, the HSP90 inhibitor geldanamycin reduces the hypersensitive response and abolishes resistance triggered by the R protein RPS2 against Pseudomonas syringae pv. tomato DC3000 (avrRpt2). One of four Arabidopsis cytosolic HSP90 isoforms, AtHSP90.1 is required for full RPS2 resistance and is rapidly induced upon pathogen challenge. We propose that RAR1 and SGT1 function closely with HSP90 in chaperoning roles that are essential for disease resistance.


The EMBO Journal | 2003

Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein

David A. Hubert; Pablo Tornero; Youssef Belkhadir; Priti Krishna; Akira Takahashi; Ken Shirasu; Jeffery L. Dangl

The Arabidopsis protein RPM1 activates disease resistance in response to Pseudomonas syringae proteins targeted to the inside of the host cell via the bacterial type III delivery system. We demonstrate that specific mutations in the ATP‐binding domain of a single Arabidopsis cytosolic HSP90 isoform compromise RPM1 function. These mutations do not affect the function of related disease resistance proteins. RPM1 associates with HSP90 in plant cells. The Arabidopsis proteins RAR1 and SGT1 are required for the action of many R proteins, and display some structural similarity to HSP90 co‐chaperones. Each associates with HSP90 in plant cells. Our data suggest that (i) RPM1 is an HSP90 client protein; and (ii) RAR1 and SGT1 may function independently as HSP90 cofactors. Dynamic interactions among these proteins can regulate RPM1 stability and function, perhaps similarly to the formation and regulation of animal steroid receptor complexes.


Cell | 1999

A Novel Class of Eukaryotic Zinc-Binding Proteins Is Required for Disease Resistance Signaling in Barley and Development in C. elegans

Ken Shirasu; Thomas Lahaye; Man-Wah Tan; Fasong Zhou; Cristina Azevedo; Paul Schulze-Lefert

Barley Rar1 is a convergence point in the signaling of resistance to powdery mildew, triggered by multiple race-specific resistance (R) genes. Rar1 is shown to function upstream of H2O2 accumulation in attacked host cells, which precedes localized host cell death. We isolated Rar1 by map-based cloning. The sequence of the deduced 25.5 kDa protein reveals two copies of a 60-amino acid domain, CHORD, conserved in tandem organization in protozoa, plants, and metazoa. CHORD defines a novel eukaryotic Zn2+-binding domain. Silencing of the C. elegans CHORD-containing gene, chp, results in semisterility and embryo lethality, suggesting an essential function of the wild-type gene in nematode development. Our findings indicate that plant R genes have recruited a fundamental cellular control element for signaling of disease resistance and cell death.


Molecular Systems Biology | 2008

Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis.

Naoyuki Sugiyama; Hirofumi Nakagami; Keiichi Mochida; Arsalan Daudi; Masaru Tomita; Ken Shirasu; Yasushi Ishihama

Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome‐wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high‐accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high‐confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine‐specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho‐residues in Arabidopsis is similar to that in humans, where over 90 tyrosine‐specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.

Collaboration


Dive into the Ken Shirasu's collaboration.

Top Co-Authors

Avatar

Satoko Yoshida

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mari Narusaka

Tokyo Gakugei University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge