Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Suzawa is active.

Publication


Featured researches published by Ken Suzawa.


Cancer Science | 2016

Antitumor effect of afatinib, as a human epidermal growth factor receptor 2‐targeted therapy, in lung cancers harboring HER2 oncogene alterations

Ken Suzawa; Shinichi Toyooka; Masakiyo Sakaguchi; Mizuki Morita; Hiromasa Yamamoto; Shuta Tomida; Tomoaki Ohtsuka; Mototsugu Watanabe; Shinsuke Hashida; Yuho Maki; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichiro Miyoshi

Human epidermal growth factor receptor 2 (HER2) is a member of the HER family of proteins containing four receptor tyrosine kinases. It plays an important role in the pathogenesis of certain human cancers. In non‐small‐cell lung cancer (NSCLC), HER2 amplification or mutations have been reported. However, little is known about the benefit of HER2‐targeted therapy for NSCLCs harboring HER2 alterations. In this study, we investigated the antitumor effect of afatinib, an irreversible epidermal growth factor receptor (EGFR)–HER2 dual inhibitor, in lung cancers harboring HER2 oncogene alterations, including novel HER2 mutations in the transmembrane domain, which we recently identified. Normal bronchial epithelial cells, BEAS‐2B, ectopically overexpressing wild‐type HER2 or mutants (A775insYVMA, G776VC, G776LC, P780insGSP, V659E, and G660D) showed constitutive autophosphorylation of HER2 and activation of downstream signaling. They were sensitive to afatinib, but insensitive to gefitinib. Furthermore, we examined the antitumor activity of afatinib and gefitinib in several NSCLC cell lines, and investigated the association between their genetic alterations and sensitivity to afatinib treatment. In HER2‐altered NSCLC cells (H2170, Calu‐3, and H1781), afatinib downregulated the phosphorylation of HER2 and EGFR as well as their downstream signaling, and induced an antiproliferative effect through G1 arrest and apoptotic cell death. In contrast, HER2‐ or EGFR‐non‐dependent NSCLC cells were insensitive to afatinib. In addition, these effects were confirmed in vivo by using a xenograft mouse model of HER2‐altered lung cancer cells. Our results suggest that afatinib is a therapeutic option as a HER2‐targeted therapy for NSCLC harboring HER2 amplification or mutations.


Cancer Science | 2015

Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib

Shinsuke Hashida; Hiromasa Yamamoto; Kazuhiko Shien; Yuichiro Miyoshi; Tomoaki Ohtsuka; Ken Suzawa; Mototsugu Watanabe; Yuho Maki; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichiro Miyoshi; Shinichi Toyooka

Afatinib is an irreversible epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR‐TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non‐small cell lung cancer. In this study, we established various afatinib‐resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib‐resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827‐ACR, was established from one of the MET amplified‐cell lines. Several afatinib‐resistant cell lines including HCC827‐ACR displayed epithelial‐to‐mesenchymal transition (EMT) features and epigenetic silencing of miR‐200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib‐resistant cells and found that MET amplification, EMT, and stem cell‐like features are observed in cells with acquired resistance to EGFR‐TKIs. This finding may provide clues to overcoming resistance to EGFR‐TKIs.


Scientific Reports | 2017

Targeting the miR-200c/LIN28B axis in acquired EGFR-TKI resistance non-small cell lung cancer cells harboring EMT features.

Hiroki Sato; Kazuhiko Shien; Shuta Tomida; Kazuhiro Okayasu; Ken Suzawa; Shinsuke Hashida; Hidejiro Torigoe; Mototsugu Watanabe; Hiromasa Yamamoto; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichiro Miyoshi; Shinichi Toyooka

MicroRNA (miR)-200 family members (miR-200s) are frequently silenced in advanced cancer and have been implicated in the process of epithelial-to-mesenchymal transition (EMT). We previously reported that miR-200s were silenced through promoter methylation in acquired EGFR-tyrosine kinase inhibitor (TKI) resistant non-small cell lung cancer (NSCLC) cells harboring EMT features. In this study, we examined the functional role of miR-200s in NSCLC cells and investigated a novel approach to overcoming acquired EGFR-TKI resistance. In the analysis of NSCLC cell lines, each of the miR-200s expression-silenced cell lines showed promoter methylation. Significant correlations between miR-200c silencing and several oncogenic pathway alterations, including EMT-changes and LIN28B overexpression, were observed in the database analysis. In addition, EGFR-wild type cell lines had lower miR-200s expression levels than EGFR-mutant cell lines. The introduction of miR-200c using pre-miR-200c caused LIN28B suppression in cells with acquired EGFR-TKI resistance that harbored EMT features. Interestingly, both the introduction of miR-200c and the knockdown of LIN28B produced an antitumor effect in acquired EGFR-TKI resistance cells, whereas these manipulations were not effective in parental cells. The miR-200c/LIN28B axis plays an important role in cells with acquired resistance to EGFR-TKI that harbor EMT features and might be a useful therapeutic target for overcoming resistance.


Oncology Reports | 2015

Hsp90 inhibitor NVP-AUY922 enhances the radiation sensitivity of lung cancer cell lines with Acquired resistance to EGFR-tyrosine kinase inhibitors

Shinsuke Hashida; Hiromasa Yamamoto; Kazuhiko Shien; Tomoaki Ohtsuka; Ken Suzawa; Yuho Maki; Masashi Furukawa; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichiro Miyoshi; Susumu Kanazawa; Shinichi Toyooka

Acquired resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is a critical issue that needs to be overcome in the treatment of patients with non-small cell lung cancer (NSCLC) harboring EGFR activating mutations. EGFR and AKT are client proteins of the 90-kDa heat shock protein (Hsp90). Therefore, it was hypothesized that the use of Hsp90 inhibitors might allow the resistance to EGFR-TKIs to be overcome. Furthermore, Hsp90 inhibitors are known to function as radiosensitizers in various types of cancer. In the present study, we evaluated the radiosensitizing effect of the novel Hsp90 inhibitor, NVP-AUY922 (AUY), on NSCLC cell lines harboring EGFR activating mutations and showing acquired resistance to EGFR-TKIs via any of several mechanisms. We used HCC827 and PC-9, which are NSCLC cell lines harboring EGFR exon 19 deletions, and gefitinib-resistant sublines derived from the same cell lines with T790M mutation, MET amplification or stem-cell like properties. AUY was more effective against the gefitinib-resistant sublines with T790M mutation and MET amplification than against the parental cell lines, although the subline with stem cell-like properties showed more than a 10-fold higher resistance to AUY than the parental cell line. AUY exerted a significant radiosensitizing effect on the parental cell line and the MET-amplified subline through inducing G2/M arrest and inhibition of non-homologous end joining (NHEJ). In contrast, the radiosensitizing effect of AUY was limited on the subline with stem cell-like properties, in which it did not induce G2/M arrest or inhibition of NHEJ. In conclusion, combined inhibition of Hsp90 plus radiation was effective, and therefore a promising treatment alternative for overcoming major EGFR-TKI resistance, such as that induced by T790M mutation or MET amplification. However, other approaches are required to overcome minor resistance to EGFR-TKIs, such as that observed in cells with stem cell-like properties.


Scientific Reports | 2016

Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway

Tomoaki Ohtsuka; Masakiyo Sakaguchi; Hiromasa Yamamoto; Shuta Tomida; Katsuyoshi Takata; Kazuhiko Shien; Shinsuke Hashida; Tomoko Miyata-Takata; Mototsugu Watanabe; Ken Suzawa; Junichi Soh; Chen Youyi; Hiroki Sato; Kei Namba; Hidejiro Torigoe; Kazunori Tsukuda; Tadashi Yoshino; Shinichiro Miyoshi; Shinichi Toyooka

HER2 is a receptor tyrosine kinase and its upregulation via activating mutations or amplification has been identified in some malignant tumors, including lung cancers. Because HER2 can be a therapeutic target in HER2-driven malignancies, it is important to understand the molecular mechanisms of HER2 activation. In the current study, we identified that cytokeratin 19 (KRT19) binds to HER2 at the inside face of plasma membrane. HER2 and KRT19, which were concurrently introduced to a human embryonic kidney 293 T cells, revealed an association with each other and resulted in phosphorylation of HER2 with the subsequent activation of a downstream Erk-associated pathway. A binding assay revealed that both the NH2-terminal head domain of KRT19 and the COOH-terminal domain of HER2 were essential for their binding. To investigate the impact of the interaction between HER2 and KRT19 in lung cancer, we examined their expressions and localizations in lung cancers. We found that KRT19 was highly expressed in HER2-positive lung cancer cells, and KRT19 and HER2 were co-localized at the cell membrane. In conclusion, we found that KRT19 intracellularly binds to HER2, playing a critical role in HER2 activation.


Cancer Microenvironment | 2016

Active Secretion of Dimerized S100A11 Induced by the Peroxisome in Mesothelioma Cells.

Satomi Saho; Hiroki Satoh; Eisaku Kondo; Yusuke Inoue; Akira Yamauchi; Hitoshi Murata; Rie Kinoshita; Ken Ichi Yamamoto; Junichiro Futami; Endy Widya Putranto; I. Made Winarsa Ruma; I. Wayan Sumardika; Chen Youyi; Ken Suzawa; Hiromasa Yamamoto; Junichi Soh; Shuta Tomida; Yoshihiko Sakaguchi; Hidekazu Iioka; Nam Ho Huh; Shinichi Toyooka; Masakiyo Sakaguchi

S100A11, a small Ca2+ binding protein, acts extracellularly as a mediator of cancer progression. That raises the question of how a protein that lacks the classical secretory signal is able to be secreted outside cells without being damaged. Some insights into this question have been obtained, and there has been accumulating evidence indicating a pivotal role of a non-classical vesicle-mediated pathway using lysosomes or peroxisomes for the protein secretion. To obtain a more precise insight into the secretory mechanism of S100A11, we first screened representative cancer cells exhibiting significantly active secretion of S100A11. From the results of profiling, we turned our attention to aggressive cancer mesothelioma cells. In mesothelioma cells, we found that abundant dimeric S100A11 was produced selectively in the peroxisome after transportation of monomeric S100A11 through an interaction with PEX14, a peroxisome membrane protein, resulting in peroxisomal secretion of dimerized S100A11. In an extracellular environment in vitro, dimerized S100A11 promoted mesothelial cell invasion indirectly with the help of fibroblast cells. Overall, the results indicate that the peroxisome functions as an essential vesicle for the production of dimerized S100A11 and the subsequent secretion of the protein from mesothelioma cells and that peroxisome-mediated secretion of dimerized S100A11 might play a critical role in mesothelioma progression in a tumor microenvironment.


The Annals of Thoracic Surgery | 2014

Asymptomatic but Functional Paraganglioma of the Posterior Mediastinum

Ken Suzawa; Hiromasa Yamamoto; Koichi Ichimura; Shinichi Toyooka; Shinichiro Miyoshi

A 72-year-old woman was referred to our hospital because of a posterior mediastinal tumor. On the basis of detailed imaging tests, including (123)I-metaiodobenzylguanidine single photon emission computed tomography-computed tomography, and elevated values of catecholamines in the plasma and urine, the tumor was diagnosed as a functional mediastinal paraganglioma even in the absence of symptoms. After preoperative blood pressure control, surgical resection was performed. During the operation, the systemic blood pressure increased transiently as a result of surgical manipulation of the tumor. Soon after the tumor was removed, the patient conversely experienced hypotension. The postoperative course was uneventful, and pathologic diagnosis revealed a paraganglioma.


PLOS ONE | 2017

Yes1 signaling mediates the resistance to Trastuzumab/Lap atinib in breast cancer.

Tatsuaki Takeda; Hiromasa Yamamoto; Hirotaka Kanzaki; Ken Suzawa; Takahiro Yoshioka; Shuta Tomida; Xiaojiang Cui; Kei Namba; Hiroki Sato; Hidejiro Torigoe; Mototsugu Watanabe; Kazuhiko Shien; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Yoshihisa Kitamura; Shinichiro Miyoshi; Toshiaki Sendo; Shinichi Toyooka

Background Overexpression of human epidermal growth factor receptor 2 (HER2) is observed in approximately 15–23% of breast cancers and these cancers are classified as HER2-positive breast cancer. Trastuzumab is the first-line targeted therapeutic drug for HER2-positive breast cancer and has improved patient overall survival. However, acquired resistance to trastuzumab is still a critical issue in breast cancer treatment. We previously established a trastuzumab-resistant breast cancer cell line (named as BT-474-R) from a trastuzumab-sensitive HER2-amplified cell line BT-474. Lapatinib is also a molecular-targeted drug for HER2-positive breast cancer, which acquired the resistance to trastuzumab. Acquired resistance to lapatinib is also an issue to be conquered. Methods We established trastuzumab/lapatinib-dual resistant cell line (named as BT-474-RL2) by additionally treating BT-474-R with lapatinib. We analyzed the mechanisms of resistance to trastuzumab and lapatinib. Besides, we analyzed the effect of the detected resistance mechanism in HER2-positive breast cancer patients. Results Proto-oncogene tyrosine-protein kinase Yes1, which is one of the Src family members, was amplified, overexpressed and activated in BT-474-R and BT-474-RL2. Silencing of Yes1 by siRNA induced both BT-474-R and BT-474-RL2 to restore the sensitivity to trastuzumab and lapatinib. Pharmaceutical inhibition of Yes1 by the Src inhibitor dasatinib was also effective to restore the sensitivity to trastuzumab and lapatinib in the two resistant cell lines. Combination treatment with dasatinib and trastuzumab induced down-regulation of signaling molecules such as HER2 and Akt. Moreover, the combination treatments induced G1-phase cell-cycle arrest and apoptosis. Consistent with cell line data, high expression of Yes1 mRNA was correlated with worse prognosis in patients with HER2-positive breast cancer. Conclusion Yes1 plays an important role in acquired resistance to trastuzumab and lapatinib in HER2-positive breast cancer. Our data suggest that pharmacological inhibition of Yes1 may be an effective strategy to overcome resistance to trastuzumab and lapatinib.


Experimental and Therapeutic Medicine | 2017

Estimation of age-related DNA degradation from formalin-fixed and paraffin-embedded tissue according to the extraction methods

Mototsugu Watanabe; Shinsuke Hashida; Hiromasa Yamamoto; Takehiro Matsubara; Tomoaki Ohtsuka; Ken Suzawa; Yuho Maki; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichi Toyooka; Shinichiro Miyoshi

Techniques for the extraction and use of nucleic acids from formalin-fixed and paraffin-embedded (FFPE) tissues, preserved over long time periods in libraries, have been developed. However, DNA extracted from FFPE tissues is generally damaged, and long-term storage may affect DNA quality. Therefore, it is important to elucidate the effect of long-term storage on FFPE tissues and evaluate the techniques used to extract DNA from them. In the present study, the yield, purity, and integrity of DNA in FFPE tissue samples was evaluated. Two DNA extraction techniques were used: A silica-binding DNA collection method using QIAamp DNA FFPE Tissue kit (QIA) and a total tissue DNA collection method using a WaxFree DNA extraction kit (WAX). A total of 25 FFPE tissues from lung adenocarcinomas were studied, which had been surgically resected and fixed at Okayama University Hospital prior to examination and subsequent storage at room temperature for 0.5, 3, 6, 9 and 12 years. Extracted DNA was quantified using ultraviolet absorbance, fluorescent dye, and quantitative polymerase chain reaction (qPCR). The quality of the DNA was defined by the absorbance ratio of 260 to 280 nm (A260/280) and Q-score, which is the quantitative value of qPCR product size ratio. The results demonstrated that the yield of total DNA extracted using WAX was significantly greater than when QIA was used (P<0.01); however, DNA extracted using WAX included more contaminants and was significantly more fragmented compared with DNA extracted using QIA (P<0.01). Aging had no significant effect on absolute DNA yield or DNA purity, although it did significantly contribute to increased DNA degradation for both QIA and WAX extraction (QIA P=0.02, WAX P=0.03; 0.5 years vs. 3 years, QIA P<0.01, WAX P=0.03; 9 years vs. 12 years). Both extraction methods are viable depending on whether high yield or high quality of extracted DNA is required. However, due to the increased degradation with age, storage time limits the available DNA in FFPE tissues regardless of the extraction method.


The Annals of Thoracic Surgery | 2015

Pneumocephalus and Chylothorax Complicating Vertebrectomy for Lung Cancer

Seiichiro Sugimoto; Masato Tanaka; Ken Suzawa; Hitoshi Nishikawa; Shinichi Toyooka; Takahiro Oto; Toshifumi Ozaki; Shinichiro Miyoshi

Pneumocephalus is a rare, but potentially fatal complication of thoracic surgery. We describe a case of successful management of pneumocephalus complicated by persistent chylothorax developing after en bloc partial vertebrectomy performed after induction chemoradiotherapy for lung cancer invading the spine. Surgical treatment should be considered for pneumocephalus complicated by any condition requiring persistent chest drainage.

Collaboration


Dive into the Ken Suzawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge